
CLAYTON CAFIERO

AN INTRODUCTION TO
PROGRAMMING AND COMPUTER SCIENCE

WITH PYTHON

An Introduction to
Programming and Computer Science

with Python

Clayton Cafiero
The University of Vermont

This book is for free use under either the GNU Free Documentation License or
the Creative Commons Attribution-ShareAlike 3.0 United States License. Take
your pick.

• http://www.gnu.org/copyleft/fdl.html
• http://creativecommons.org/licenses/by-sa/3.0/us/

Book style has been adapted from the Memoir class for TEX, copyright © 2001–
2011 Peter R. Wilson, 2011–2022 Lars Madsen, and is thus excluded from the
above licence.

Images from Matplotlib.org in Chapter 15 are excluded from the license for
this material. They are subject to Matplotlib’s license at https://matplotlib.o
rg/stable/users/project/license.html. Photo of Edsger Dijkstra by Hamilton
Richards, University Texas at Austin, available under a Creative Commons CC
BY-SA 3.0 license: https://creativecommons.org/licenses/by-sa/3.0/.

No generative AI was used in writing this book.

Manuscript prepared by the author with Quarto, Pandoc, and XƎLATEX.

Illustrations, diagrams, and cover artwork by the author, except for the graph
in Chapter 17, Exercise 2, which is adapted from an earlier version by Harry
Sharman.

Version: 0.3.1

ISBN: 979-8-9887092-0-6
Library of Congress Control Number: 2023912320

First edition
10 9 8 7 6 5 4

Printed in the United States of America

http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by-sa/3.0/us/
https://matplotlib.org/stable/users/project/license.html
https://matplotlib.org/stable/users/project/license.html
https://creativecommons.org/licenses/by-sa/3.0/

For the Bug and the Bull

Table of contents

Table of contents i

Preface v

To the student vii

Acknowledgements ix

1 Introduction 1

2 Programming and the Python Shell 11
2.1 Why learn a programming language? 12
2.2 Compilation and interpretation 14
2.3 The Python shell . 16
2.4 Hello, Python! . 18
2.5 Syntax and semantics . 19
2.6 Introduction to binary numbers 21
2.7 Exercises . 25

3 Types and literals 27
3.1 What are types? . 28
3.2 Dynamic typing . 31
3.3 Types and memory . 33
3.4 More on string literals . 35
3.5 Representation error of numeric types 37
3.6 Exercises . 41

4 Variables, statements, and expressions 43
4.1 Variables and assignment 44
4.2 Expressions . 49
4.3 Augmented assignment operators 54
4.4 Euclidean or “floor” division 54
4.5 Modular arithmetic . 59
4.6 Exponentiation . 66
4.7 Exceptions . 68
4.8 Exercises . 71

5 Functions 75
5.1 Introduction to functions 76

i

ii Table of contents

5.2 A deeper dive into functions 81
5.3 Passing arguments to a function 87
5.4 Scope . 88
5.5 Pure and impure functions 90
5.6 The math module . 91
5.7 Exceptions . 93
5.8 Exercises . 95

6 Style 97
6.1 The importance of style 97
6.2 PEP 8 . 98
6.3 Whitespace . 98
6.4 Names (identifiers) . 100
6.5 Line length . 101
6.6 Constants . 101
6.7 Comments in code . 102
6.8 Exercises . 105

7 Console I/O 107
7.1 Motivation . 108
7.2 Command line interface 108
7.3 The input() function . 108
7.4 Converting strings to numeric types 110
7.5 Some ways to format output 115
7.6 Python f-strings and string interpolation 116
7.7 Format specifiers . 117
7.8 Scientific notation . 118
7.9 Formatting tables . 118
7.10 Example: currency converter 121
7.11 Format specifiers: a quick reference 124
7.12 Exceptions . 125
7.13 Exercises . 127

8 Branching and Boolean expressions 129
8.1 Boolean logic and Boolean expressions 130
8.2 Comparison operators . 133
8.3 Branching . 135
8.4 if, elif, and else . 136
8.5 Truthy and falsey . 138
8.6 Input validation . 139
8.7 Some string methods . 141
8.8 Decision trees . 144
8.9 Exercises . 146

9 Structure, development, and testing 149
9.1 main the Python way . 150
9.2 Program structure . 155
9.3 Iterative and incremental development 155
9.4 Testing your code . 161
9.5 The origin of the term “bug” 168
9.6 Using assertions to test your code 170
9.7 Rubberducking . 172

Table of contents iii

9.8 Exceptions . 173
9.9 Exercises . 173

10 Sequences 177
10.1 Lists . 178
10.2 Tuples . 185
10.3 Mutability and immutability 188
10.4 Subscripts are indices . 192
10.5 Concatenating lists and tuples 193
10.6 Copying lists . 194
10.7 Finding an element within a sequence 195
10.8 Sequence unpacking . 197
10.9 Strings are sequences . 199
10.10 Sequences: a quick reference guide 200
10.11 Slicing . 201
10.12 Passing mutables to functions 204
10.13 Exceptions . 206
10.14 Exercises . 207

11 Loops and iteration 211
11.1 Loops: an introduction . 212
11.2 while loops . 213
11.3 Input validation with while loops 218
11.4 An ancient algorithm with a while loop 221
11.5 for loops . 223
11.6 Iterables . 228
11.7 Iterating over strings . 230
11.8 Calculating a sum in a loop 230
11.9 Loops and summations . 231
11.10 Products . 232
11.11 enumerate() . 232
11.12 Tracing a loop . 235
11.13 Nested loops . 240
11.14 Stacks and queues . 242
11.15 A deeper dive into iteration in Python 245
11.16 Exercises . 247

12 Randomness, games, and simulations 251
12.1 The random module . 252
12.2 Pseudo-randomness in more detail 255
12.3 Using the seed . 256
12.4 Exercises . 258

13 File I/O 261
13.1 Context managers . 262
13.2 Reading from a file . 262
13.3 Writing to a file . 263
13.4 Keyword arguments . 265
13.5 More on printing strings 266
13.6 The csv module . 267
13.7 Exceptions . 271
13.8 Exercises . 272

iv Table of contents

14 Data analysis and presentation 275
14.1 Some elementary statistics 275
14.2 Python’s statistics module 281
14.3 A brief introduction to plotting with Matplotlib 282
14.4 The basics of Matplotlib 284
14.5 Exceptions . 289
14.6 Exercises . 289

15 Exception handling 293
15.1 Exceptions . 294
15.2 Handling exceptions . 298
15.3 Exceptions and flow of control 301
15.4 Exercises . 302

16 Dictionaries 305
16.1 Introduction to dictionaries 305
16.2 Iterating over dictionaries 310
16.3 Deleting dictionary keys 312
16.4 Hashables . 313
16.5 Counting letters in a string 315
16.6 Exceptions . 316
16.7 Exercises . 317

17 Graphs 319
17.1 Introduction to graphs . 319
17.2 Searching a graph: breadth-first search 321
17.3 Exercises . 325

Appendices 327

A Glossary 327

B Mathematical notation 359

C pip and venv 361

D File systems 365

E Flow charts 369

F Code for cover artwork 375

Preface

This book has been written for use in University of Vermont’s CS1210
Introduction to Programming (formerly CS021). This is a semester long
course which covers much of the basics of programming, and an intro-
duction to some fundamental concepts in computer science. Not being
happy with any of the available textbooks, I endeavored to write my own.
Drafting began in August 2022, essentially writing a chapter a week over
the course of the semester, delivered to students via UVM’s learning
management system. The text was revised, edited, and expanded in the
following semester.

UVM’s CS1210 carries “QR” (quantitative reasoning) and “QD”
(quantitative and data literacy) designations. Accordingly, there’s some
mathematics included:

• writing functions to perform calculations,
• writing programs to generate interesting integer sequences,
• demonstrating the connection between pure functions and mathe-

matical functions,
• demonstrating the connection between list indices and subscript

notation,
• demonstrating that summations are loops,

and so on, to address the QR requirement. To address the QD require-
ment, we include some simple plotting with Matplotlib. Other aspects
of these requirements are addressed in programming assignments, lab
exercises, and lecture.

Nevertheless, despite this book’s primary objective as instructional
material for a specific course at UVM, others may find this material
useful.

–CC, July 2023

v

vi Preface

Errata and suggestions
I’m fully aware that this text isn’t quite “ready for prime time,” but, as
it’s been said, “time and tide wait for no one,” and a new semester ap-
proaches. So we push this unfinished work out of the nest, and hope for
the best. If you have errata (which I’m certain are abundant) or sugges-
tions, I’m all ears and I welcome your feedback—bouquets or brickbats
or anything in between.

Contact
Clayton Cafiero
The University of Vermont
College of Engineering and Mathematical Sciences
Department of Computer Science
Innovation E309
82 University Place
Burlington, VT 05405-0125 (USA)

cbcafier@uvm.edu
https://www.uvm.edu/~cbcafier

To the student

Learning how to program is fun and rewarding, but it demands a rather
different, structured approach to problem solving. This comes with time
and practice. While I hope this book will help you learn how to solve
problems with code, the only way to learn programming is by doing it.
There’s more than a little trial and error involved. If you find yourself
struggling, don’t despair—it just takes time and practice.

You will make mistakes—that’s part of the process. As John Dewey
once said, “Failure is instructive. The person who really thinks learns
quite as much from their failures as from their successes.”

You’ll notice in this book that there are abundant examples given
using the Python shell. The Python shell is a great way to experiment
and deepen your understanding. I encourage you to follow along with
the examples in the book, and enter them into the shell yourself. Unlike
writing programs and then running them, interacting with the Python
shell gives you immediate feedback. If you don’t understand something
as well as you’d like, turn to the shell. Experiment there, and then go
back to writing your program.

If you take away only one thing from a first course in programming, it
should not be the details of the syntax of the language. Rather, it should
be an ability to decompose a problem into smaller units, to solve the
smaller problems in code, and then to build up a complete solution from
smaller subproblems. The primary vehicle for this approach is functions.
So make sure you gain a firm grasp of functions (see in particular Chapter
5).

Good luck and happy coding!

vii

Acknowledgements

Thanks to my colleagues, students, and teaching assistants in the Depart-
ment of Computer Science at the University of Vermont for motivation,
encouragement, suggestions, feedback, and corrections. Without you, this
book would not exist. Thanks to Chris Skalka for support and encour-
agement, for the opportunity to teach, and for luring me back to UVM.
Thanks to Isaac Levy for stimulating conversations on Python, and for
feedback on early drafts that he used in his own teaching. Thanks to
Jackie Horton, particularly for helpful comments on Chapter 3. Thanks
to Jim Eddy for helping me through my first semester of teaching CS1210
(back when it was CS021). Thanks to Sami Connolly for using a prelim-
inary draft in her own teaching and providing feedback. Thanks to Lisa
Dion for morning check-ins and many helpful suggestions. Thanks to
Joan “Rosi” Rosebush for regular chocolate deliveries. Thanks to Harry
Sharman for helping with much of the painstaking work of turning words
into a book, and for contributing a few of the exercises and an early ver-
sion of Appendix D. Thanks to Deborah Cafiero for proofreading and
patience. Thanks to Jim Hefferon who has served as a role model with-
out knowing it.

Since the release of the first print edition, the following people have re-
ported defects and provided corrections: Murat Güngör, Daniel Triplett,
Anna Gale, Nina Holm, Colin Menuchi, Shiloh Chiu, Ted Pittman, Mi-
lan Chirag Shah, Andrew Slowman, Joey Donohue, Gale Stone, Darby
Lane, Lillian Wyckoff, Angelique Macie, Alex Marshall, Ryan Stailey,
Darrian Michaelides, Jackson Francis, Matthew Jackmore, Sami Con-
nolly, Gabriella DiGiovanni, Luke Ste. Marie, and Tyler Berman. Thank
you all.

ix

Chapter 1

Introduction

Computer science is a science of abstraction—creating
the right model for a problem and devising the appro-
priate mechanizable techniques to solve it.

–Alfred V. Aho

The goal of this book is to provide an introduction to computer pro-
gramming with Python. This includes

• functional decomposition and a structured approach to program-
ming,

• writing idiomatic Python,
• understanding the importance of abstraction,
• practical problem-solving exercises, and
• a brief introduction to plotting with Matplotlib.

When you get to know it, Python is a peculiar programming lan-
guage.1 Much of what’s peculiar about Python is concealed by its seem-
ingly simple syntax. This is part of what makes Python a great first
language—and it’s fun!

Organization of this book
The book is organized into chapters which roughly correspond to a week’s
worth of material (with some deviations). Some chapters, particularly
the first few, should be consumed at a rate of two a week. We present
below a brief description of each chapter, followed by mention of some
conventions used in the book.

Programming and the Python shell
This chapter provides some motivation for why programming languages
are useful, and gives a general outline of how a program is executed by the

1It’s not quite sui generis—Python is firmly rooted in the tradition of ALGOL-
influenced programming languages.

1

2 Introduction

Python interpreter. This chapter also introduces the two modes of using
Python. The interactive mode allows the user to interact with the Python
interpreter using the Python shell. Python statements and expressions
are entered one at a time, and the interpreter evaluates or executes the
code entered by the user. This is an essential tool for experimentation
and learning the details of various language features. Script mode allows
the user to write, save, and execute Python programs. This is convenient
since in this mode we can save our work, and run it multiple times
without having to type it again and again at the Python shell.

This chapter also includes a brief introduction to binary numbers and
binary arithmetic.

Types and literals
The concept of type is one of the most important in all computer science
(indeed there’s an entire field called “type theory”).

This chapter introduces the most commonly used Python types,
though in some cases, complete presentation of a given type will come
later in the text—lists and dictionaries, for example. Other types are in-
troduced later in the text (for example, function, range, enumerate, etc.).
As types are introduced, examples of literals of each type are given.

Since representation error is a common cause of bewilderment among
beginners, there is some discussion of why this occurs with float objects.

Variables, statements, and expressions
This chapter introduces much of the machinery that will be used through-
out the remainder of the text: variables, assignment, expressions, opera-
tors, and evaluation of expressions.

On account of its broad applicability, a substantial account of modular
arithmetic is presented as well.

Functions
Functions are the single most important concept a beginning programmer
can acquire. Functional decomposition is a crucial requirement of writing
reliable, robust, correct code.

This chapter explains why we use functions, how functions are defined,
how functions are called, and how values are returned. We’ve tried to
keep this “non-technical” and so there’s no discussion of a call stack,
though there is discussion of scope.

Because beginning programmers often introduce side effects into func-
tions where they are undesirable or unnecessary, this chapter makes clear
the distinction between pure functions (those without side effects) and
impure functions (those with side effects, including mutating mutable
objects).

Because the math module is so widely used and includes many useful
functions, we introduce the math module in this chapter. In this way, we
also reinforce the idea of information hiding and good functional design.
Do we need to know how the mathmodule implements its sqrt() function?
Of course not. Should we have to know how a function is implemented

3

in order to use it? Apart from knowing what constitutes a valid input
and what it returns as an output, no, we do not!

Style
Our goal here is to encourage the writing of idiomatic Python. Accord-
ingly, we address the high points of PEP 8—the de facto style guide for
Python—and provide examples of good and bad style.

Students don’t always understand how important style is for the read-
ability of one’s code. By following style guidelines we can reduce the
cognitive load that’s required to read code, thereby making it easier to
reason about and understand our code.

Console I/O (input/output)
This chapter demonstrates how to get input from the user (in command
line programs) and how to format output using f-strings. Because f-
strings have been around so long now, and because they allow for more
readable code, we’ve avoided presentation of older, and now seldom used,
C-style string formatting.

Branching
Branching is a programming language’s way of handling conditional ex-
ecution of code. In this chapter, we cover conditions (Boolean expres-
sions) which evaluate to a true or false (or a value which is “truthy”
or “falsey”—like true or like false). Python uses these conditions to de-
termine whether a block of code should be executed. In many cases we
have multiple branches—multiple paths of execution that might be taken.
These are implemented with if, elif (a portmanteau of “else if”), and
often else.

One common confusion that beginners face is understanding which
branch is executed in an if/elif/else structure, and hopefully the chapter
makes this clear.

Also covered are nested if statements, and two ways of visually rep-
resenting branching (each appropriate to different use cases)—decision
trees and flow charts.

Structure, development, and testing
Beginners often struggle with how to structure their code—both for
proper flow of execution and for readability. This chapter gives clear
guidelines for structuring code based on common idioms in Python. It
also addresses how we can incrementally build and test our code.

Unlike many introductory texts, we present assertions in this chapter.
Assertions are easy to understand and their use has great pedagogical
value. In order to write an assertion, a programmer must understand
clearly what behavior or output is expected for a given input. Using
assertions helps you reason about what should be happening when your
code is executed.

4 Introduction

Sequences
Sequences—lists, tuples, and strings—are presented in this chapter. It
makes sense to present these before presenting loops for two reasons.
First, sequences are iterable, and as such are used in for loops, and with-
out a clear understanding of what constitutes an iterable, understanding
such loops may present challenges. Second, we often do work within a
loop which might involve constructing or filtering a list of objects.

Common features of sequences—for example, they are all indexed,
support indexed reads, and are iterable—are highlighted throughout the
chapter.

As this chapter introduces our first mutable type, the Python list, we
present the concepts of mutability and immutability in this chapter.

Loops
Loops allow for repetitive work or calculation. In this chapter we present
the two kinds of loop supported by Python—while loops and for loops.
At this point, students have seen iterables (in the form of sequences)
and Boolean expressions, which are a necessary foundation for a proper
presentation of loops.

Also, this chapter introduces two new types—range and enumerate—
and their corresponding constructors. Presentation of range entails dis-
cussion of arithmetic sequences, and presentation of enumerate works
nicely with tuple unpacking (or more generally, sequence unpacking),
and so these are presented first in this chapter.

This chapter also provides a brief introduction to stacks and queues,
which are trivially implemented in Python using list as an underlying
data structure.

I’ve intentionally excluded treatment of comprehensions since begin-
ners have difficulty reading and writing comprehensions without a prior,
solid foundation in for loops.

Randomness, games, and simulations
There are many uses for randomness. Students love to write programs
which implement games, and many games involve some chance element or
elements—rolling dice, spinning a wheel, tossing a coin, shuffling a deck,
and so on. Another application is in simulations, which may also include
some chance elements. All manner of physical and other phenomena can
be simulated with some randomness built in.

This chapter presents Python’s random module, and some of the more
commonly used methods within this module—random.random(), ran-
dom.randint(), random.choice(), and random.shuffle(). Much of this is
done within the context of games of chance, but we also include some sim-
ulations (for example, random walk and Gambler’s Ruin). There is also
some discussion of pseudo-random numbers and how Python’s pseudo-
random number generator is seeded.

File I/O (input/output)
This chapter shows you how to read data from and write data to a file.
File I/O is best accomplished using a context manager. Context man-

5

agers were introduced with Python 2.5 in 2006, and are a much preferred
idiom (as compared to using try/finally). Accordingly, all file I/O demon-
strations make use of context managers created with the Python keyword
with.

Because so much data is in CSV format (or can be exported to this
format easily), we introduce the csv module in this chapter. Using the
csv module reduces some of the complexity we face when reading data
from a file, since we don’t have to parse it ourselves.

Exception handling
In this chapter, we present simple exception handling (using try/except,
but not finally), and explain that some exceptions should not be han-
dled since in doing so, we can hide programming defects which should
be corrected. We also demonstrate the use of exception handling in in-
put validation. When you reach this chapter, you’ll already have seen
while loops for input validation, so the addition of exception handling
represents only an incremental increase in complexity in this context.

Data analysis and presentation
This chapter is motivated in large part by the University of Vermont’s
QD (quantitative and data literacy) designation for the course for which
this textbook was written. Accordingly, we present some very basic de-
scriptive statistics and introduce Python’s statistics module including
statistics.mean(), statistics.pstdev(), and statistics.quantiles().
The presentation component of this chapter is done using Matplotlib,
which is the de facto standard for plotting and visualization with Python.
This covers only the rudiments of Matplotlib’s Pyplot interface (line plot,
bar plot, etc.), and is not intended as a complete introduction.

Dictionaries
Dictionaries are the last new type we present in the text. Dictionaries
store information using a key/value model—we look up values in a dic-
tionary by their keys. Like sequences, dictionaries are iterable, but since
they have keys rather than indices, this works a little differently. We’ll
see three different ways to iterate over a dictionary.

We’ll also learn about hashability in the context of dictionary keys.

Graphs
Since graphs are so commonplace in computer science, it seems appro-
priate to include a basic introduction to graphs in this text. Plus, graphs
are really fun!

A graph is a collection of vertices (also called nodes) and edges, which
connect the vertices of the graph. The concrete example of a highway map
is used, and an algorithm for breadth-first search (BFS) is demonstrated.
Since queues were introduced in chapter 11, the conceptual leap here—
using a queue in the BFS algorithm—shouldn’t be too great.

6 Introduction

Assumptions regarding prior knowledge of mathematics
This text assumes a reasonable background in high-school algebra and a
little geometry (for example, the Pythagorean theorem and right trian-
gles). Prior exposure to summations and subscripts would help the reader
but is not essential, as these are introduced in the text. The same goes
for mean, standard deviation, and quantiles. You might find it helpful if
you’ve seen these before, but these, too, are introduced in the text.

The minimum expectation is that you can add, subtract, multiply
and divide; that you understand exponents and square roots; and that
you understand the precedence of operations, grouping of expressions
with parentheses, and evaluating expressions with multiple terms and
operations.

Assumptions regarding prior knowledge of computer use
While this book assumes no prior knowledge whatsoever when it comes
to programming, it does assume that you have some familiarity with
using a computer and have a basic understanding of your computer’s file
system (a hierarchical system consisting of files and directories). If you
don’t know what a file is, or what a directory is, see Appendix D, or
consult documentation for your operating system. Writing and running
programs requires that you understand the basics of a computer file
system.

Typographic conventions used in this book
Names of functions, variables, and modules are rendered in fixed-pitch
typeface, as are Python keywords, code snippets, and sample output.

print("Hello, World!")

When referring to structures which make use of multiple keywords we
render these keywords separated by slashes but do not use fixed-pitch
typeface. Examples: if/else, if/elif, if/elif/else, try/except, try/finally,
etc.

File names, for example, hello_world.py, and module names, for ex-
ample, math, are also rendered in fixed-pitch typeface.

Where it is understood that code is entered into the Python shell,
the interactive Python prompt >>> is shown. Wherever you see this, you
should understand we’re working in Python shell. >>> should never ap-
pear in your code.2 Return values and evaluation of expressions are in-
dicated just as they are in the Python shell, without the leading >>>.

>>> 1 + 2
3
>>> import math
>>> math.sqrt(36)
6

2Except in the case of doctests, which are not presented in this text.

7

In a few places, items which are placeholders for actual values or
variable names are given in angle brackets, thus <foo>. For example, when
describing the three-argument syntax for the range() function, we might
write range(<start>, <stop>, <stride>) to indicate that three arguments
must be supplied—the first for the start value, the second for the stop
value, and the last for the stride. It’s important to understand that the
angle brackets are not part of the syntax, but are merely a typographic
convention to indicate where an appropriate substitution must be made.

All of these conventions are in accord with the typographical conven-
tions used in the official Python documentation at python.org. Hopefully,
this will make it easier for students when they consult the official docu-
mentation.

Note that this use of angle brackets is a little different when it comes
to traceback messages printed when exceptions occur. There you may
see things like <stdin> and <module>, and in this context, they are not
placeholders requiring substitution by the user.

Other conventions
When referring to functions, whether built-in, from some imported mod-
ule, or otherwise, without any other context or specific problem instance,
we write function identifiers along with parentheses (as a visual indica-
tor that we’re speaking of a function) but without formal parameters.
Example: “The range() function accepts one, two, or three arguments.”
This should not be read as suggesting that range() takes no arguments.

Entry point / top-level code environment
As noted in the text, unlike many other languages such as C, C++,
Java, etc., a function named main() has no special meaning in Python
whatsoever. The correct way to specify the entry point of your code in
Python is with

if __name__ == '__main__':
the rest of your code here

This is explained fully in Chapter 9.
In code samples in the book, we do, however, avoid using this if there

are no function definitions included in the code. We do this for space
and conciseness of the examples. The same could reasonably apply to
your code. In most cases, if there are no function definitions in your
module, there’s no need for this if statement (though it’s fine to include
it). However, if there are any function definitions in your module, then
if __name__ == '__main__': is the correct, Pythonic way to segregate
your driver code from your function definitions.

Origin of Python
Python has been around a long time, with the first release appearing
in 1991 (four years before Java). It was invented by Guido van Rossum,
who is now officially Python’s benevolent dictator for life (BDFL).

8 Introduction

Python gets its name from the British comedy troupe Monty Python’s
Flying Circus (Guido is a fan).

Nowadays, Python is one of the most widely used programming lan-
guages on the planet and is supported by an immense ecosystem and
thriving community. See: https://python.org/ for more.

Python version
As this book is written, the current version of Python is 3.11.4. However,
no new language features introduced since version 3.6 are presented in
this book (as most are not appropriate or even useful for beginners).
This book does cover f-strings, which were introduced in version 3.6.
Accordingly, if you have Python version 3.6–3.11, you should be able to
follow along with all code samples and exercises.

Using the Python documentation
For beginners and experts alike, a language’s documentation is an essen-
tial resource. Accordingly, it’s important that you know how to find and
consult Python’s online documentation.

There are many resources available on the internet and the quality
of these resources varies from truly awful to superb. The online Python
documentation falls toward the good end of that spectrum.

Pros
• Definitive and up-to-date
• Documentation for different versions clearly specified
• Thorough and accurate
• Includes references for all standard libraries
• Available in multiple languages
• Includes a comprehensive tutorial for Python beginners
• Coding examples (where given) conform to good Python style (PEP

8)

Cons
• Can be lengthy or technical—not always ideal for beginners
• Don’t always appear at top of search engine results.

python.org
Official Python documentation, tutorials, and other resources are hosted
at https://python.org.

https://python.org/
https://python.org

9

• Documentation: https://docs.python.org/3/
• Tutorial: https://docs.python.org/3/tutorial/
• Beginner’s Guide: https://wiki.python.org/moin/BeginnersGuide

I recommend these as the first place to check for online resources.

Warning

There’s a lot of incorrect, dated, or otherwise questionable code on
the internet. Be careful when consulting sources other than official
documentation.

https://docs.python.org/3/
https://docs.python.org/3/tutorial/
https://wiki.python.org/moin/BeginnersGuide

Chapter 2

Programming and the Python
Shell

Our objective for this chapter is to lay the foundations for the rest of
the course. If you’ve done any programming before, some of this may
seem familiar, but read carefully nonetheless. If you haven’t done any
programming before that’s OK.

Learning objectives
• You will learn how to interact with the Python interpreter using

the Python shell.
• You will learn the difference between interactive mode (in the shell)

and script mode (writing, saving, and running programs).
• You will learn a little about computers, how they are structured,

and that they use binary code.
• You will understand why we wish to write code in something other

than just zeros and ones, and you’ll learn a little about how Python
translates high-level code (written by you, the programmer) into
binary instructions that a computer can execute.

• You will write, save, and run your first Python program—an or-
dered collection of statements and expressions.

Terms introduced
• binary code
• bytecode
• compilation vs interpretation
• compiler
• console
• integrated development environment (IDE)
• interactive mode
• low-level vs high-level programming language
• Python interpreter / shell
• read-evaluate-print loop (REPL)
• semantics
• script mode

11

12 Programming and the Python Shell

• syntax
• terminal

2.1 Why learn a programming language?
Computers are powerful tools. Computers can perform all manner of
tasks: communication, computation, managing and manipulating data,
modeling natural phenomena, and creating images, videos, and music,
just to name a few. However, computers don’t read minds (yet), and
thus we have to provide instructions to computers so they can perform
these tasks.

Computers don’t speak natural languages (yet)—they only under-
stand binary code. Binary code is unreadable by humans.

For example, a portion of an executable program might look like this
(in binary):

0110101101101011 1100000000110101 1011110100100100
1010010100100100 0010100100010011 1110100100010101
1110100100010101 0001110110000000 1110000111100000
0000100000000001 0100101101110100 0000001000101011
0010100101110000 0101001001001001 1010100110101000

This is unintelligible. It’s bad enough to try to read it, and it would be
even worse if we had to write our computer programs in this fashion.

Computers don’t speak human language, and humans don’t speak
computer language. That’s a problem. The solution is programming lan-
guages.

Programming languages allow us, as humans, to write instructions
in a form we can understand and reason about, and then have these
instructions converted into a form that a computer can read and execute.

There is a tremendous variety of programming languages. Some lan-
guages are low-level, like assembly language, where there’s roughly a
one-to-one correspondence between machine instructions and assembly
language instructions. Here’s a “Hello World!” program in assembly lan-
guage (for ARM64 architecture):1

.equ STDOUT, 1

.equ SVC_WRITE, 64

.equ SVC_EXIT, 93

.text

.global _start

_start:
stp x29, x30, [sp, -16]!
mov x0, #STDOUT
ldr x1, =msg
mov x2, 13

1Assembly language code sample from Rosetta Code: https://www.rosettacode.
org/wiki/Hello_world

https://www.rosettacode.org/wiki/Hello_world
https://www.rosettacode.org/wiki/Hello_world

Why learn a programming language? 13

mov x8, #SVC_WRITE
mov x29, sp
svc #0 // write(stdout, msg, 13);
ldp x29, x30, [sp], 16
mov x0, #0
mov x8, #SVC_EXIT
svc #0 // exit(0);

msg: .ascii "Hello World!\n"
.align 4

Now, while this is a lot better than a string of zeros and ones, it’s not
so easy to read, write, and reason about code in assembly language.

Fortunately, we have high-level languages. Here’s the same program
in C++:

#include <iostream>

int main () {
std::cout << "Hello World!" << std::endl;

}

Much better, right?
In Python, the same program is even more succinct:

print('Hello World!')

Notice that as we progress from machine code to Python, we’re in-
creasing abstraction. Machine code is the least abstract. These are the ac-
tual instructions executed on your computer. Assembly code uses human-
readable symbols, but still retains (for the most part) a one-to-one corre-
spondence between assembly instructions and machine instructions. In
the case of C++, we’re using a library iostream to provide us with an ab-
straction of an output stream, std::cout, and we’re just sending strings
to that stream. In the case of Python, we simply say “print this string”
(more or less). This is the most abstract of these examples—we needn’t
concern ourselves with low-level details.

14 Programming and the Python Shell

Figure 2.1: Increasing abstraction

Now, you may be wondering: How is it that we can write programs in
such languages when computers only understand zeros and ones? There
are programs which convert high-level code into machine code for ex-
ecution. There are two main approaches when dealing with high-level
languages, compilation and interpretation.

2.2 Compilation and interpretation
Generally speaking, compilation is a process whereby source code in some
programming language is converted into binary code for execution on a
particular architecture. The program which performs this conversion is
called a compiler. The compiler takes source code (in some programming
language) as an input, and yields binary machine code as an output.

Figure 2.2: Compilation (simplified)

Interpreted languages work a little differently. Python is an inter-
preted language. In the case of Python, intermediate code is generated,
and then this intermediate code is read and executed by another program.
The intermediate code is called bytecode.

Compilation and interpretation 15

While the difference between compilation and interpretation is not
quite as clear-cut as suggested here, these descriptions will serve for the
present purposes.

The Python interpreter
Python is an interpreted language with intermediate bytecode. While
you don’t need to understand all the details of this process, it’s helpful
to have a general idea of what’s going on.

Say you have written this program and saved it as hello_world.py.

print('Hello World!')

You may run this program from the terminal (command prompt), thus:

$ python hello_world.py

where $ indicates a command prompt (your prompt may vary). When
this runs, the following is printed to the console:

Hello World!

When we run this program, Python first reads the source code, then
produces the intermediate bytecode, then executes each instruction in
the bytecode.

Figure 2.3: Execution of a Python program

16 Programming and the Python Shell

1. By issuing the command python hello_world.py, we invoke the
Python interpreter and tell it to read and execute the program
hello_world.py (.py is the file extension used for Python files).

2. The Python interpreter reads the file hello_world.py.
3. The Python interpreter produces an intermediate, bytecode repre-

sentation of the program in hello_world.py.
4. The bytecode is executed by the Python Virtual Machine.
5. This results in the words “Hello World!” being printed to the con-

sole.

So you see, there’s a lot going on behind the scenes when we run a
Python program.2 However, this allows us to write programs in a high-
level language that we as humans can understand.

Supplemental reading
• Whetting Your Appetite, from The (Official) Python Tutorial.3

2.3 The Python shell
The Python interpreter provides you with an environment for experimen-
tation and observation—the Python shell, where we work in interactive
mode. It’s a great way to get your feet wet.

When working with the Python shell, you can enter expressions and
Python will read them, evaluate them, and print the result. (There’s
more you can do, but this is a start.)

There are several ways to run the Python shell: in a terminal (com-
mand prompt) by typing python, python3, or py depending on the ver-
sion(s) of Python installed on your machine. You can also run the Python
shell through your chosen IDE (details will vary).

The first thing you’ll notice is this symbol: >>>. This is the Python
prompt (you don’t type this bit, this is Python telling you it’s ready for
new input).

We’ll start with some simple examples (open the shell on your com-
puter and follow along):

>>> 1
1

Here we’ve entered 1. This is interpreted by Python as an integer, and
Python responds by printing the evaluation of what you’ve just typed:
1.

When we enter numbers like this, we call them “integer literals”—in
the example above, what we entered was literally a 1. Literals are special
in that they evaluate to themselves.

Now let’s try a simple expression that’s not a mere literal:

2Actually, there’s quite a bit more going on behind the scenes, but this should
suffice for our purposes. If you’re curious and wish to learn more, ask!

3https://docs.python.org/release/3.10.4/tutorial/appetite.html

https://docs.python.org/release/3.10.4/tutorial/appetite.html

The Python shell 17

Figure 2.4: The Python shell in a terminal (above)

>>> 1 + 2
3

Python understands arithmetic and when the operands are numbers (in-
tegers or floating-point) then + works just like you’d expect. So here we
have a simple expression—a syntactically valid sequence of symbols that
evaluates to a value. What does this expression evaluate to? 3 of course!

We refer to the + operator as a binary infix operator, since it takes
two operands (hence, “binary”) and the operand is placed between the
operands (hence, “infix”).

Here’s another familiar binary infix operator: -. You already know
what this does.

>>> 17 - 5
12

Yup. Just as you’d expect. The Python shell evaluates the expression 17
- 5 and returns the result: 12.

REPL
This process—of entering an expression and having Python evaluate it
and display the result—is called REPL which is an acronym for read-
evaluate-print loop. Many languages have REPLs, and obviously, Python
does too. REPLs were invented (back in the early 1960s) to provide an
environment for exploratory programming. This is facilitated by allowing
the programmer to see the result of each portion of code they enter.
Accordingly, I encourage you to experiment with the Python shell. Do

18 Programming and the Python Shell

some tinkering and see the results. You can learn a lot by working this
way.

Saving your work
Entering expressions into the Python shell does not save anything. In
order to save your code, you’ll want to work outside the shell (we’ll see
more on this soon).

Exiting the interpreter
If you’re using an IDE there’s no need to exit the shell. However, if you’re
using a terminal, and you wish to return to your command prompt, you
may exit the shell with exit().

>>> exit()

2.4 Hello, Python!
It is customary—a nearly universal ritual, in fact—when learning a new
programming language, to write a program that prints “Hello World!” to
the console. This tradition goes back as at least as far as 1974, when Brian
Kernighan included such a program in his tutorial for the C programming
language at Bell Labs, perhaps earlier.

So, in keeping with this fine tradition, our first program will do the
same—print “Hello World!” to the console.

Python provides us with simple means to print to the console: a func-
tion named print(). If we wish to print something to the console, we
write print() and place what we wish to print within the parentheses.

print("Hello World!")

That’s it!
If we want to run a program in script mode we must write it and save

it. Let’s do that.
In your editor or IDE open a new file, and enter this one line of code

(above). Save the file as hello_world.py.
Now you can run your program. If you’re using an IDE, you can run

the file within your IDE. You can also run the file from the command
line, for example,

$ python hello_world.py

where $ is the command line prompt (this will vary from system to
system). The $ isn’t something you type, it’s just meant to indicate a
command prompt (like >>> in the Python shell). When you run this
program it should print:

Syntax and semantics 19

Hello World!

Next steps
The basic steps above will be similar for each new program you write. Of
course, as we progress, programs will become more challenging, and it’s
likely you may need to test a program by running it multiple times as
you make changes before you get it right. That’s to be expected. But now
you’ve learned the basic steps to create a new file, write some Python
code, and run your program.

2.5 Syntax and semantics
In this text we’ll talk about syntax and semantics, so it’s important that
we understand what these terms mean, particularly in the context of
computer programming.

Syntax
In a (natural) language course—say Spanish, Chinese, or Latin—you’d
learn about certain rules of syntax, that is, how we arrange words and
choose the correct forms of words to produce a valid sentence or utter-
ance. For example, in English,

My hovercraft is full of eels.

is a syntactically valid sentence.4 While it may or may not be true, and
may not even make sense, it is certainly a well-formed English sentence.
By contrast, the sequence of words

Is by is is and cheese for

is not a well-formed English sentence. These are examples of valid and
invalid syntax. The first is syntactically valid (well-formed); the second
is not.

Every programming language has rules of syntax—rules which govern
what is and is not a valid statement or expression in the language. For
example, in Python

>>> 2 3

is not syntactically valid. If we were to try this using the Python shell,
the Python interpreter would complain.

4“My hovercraft is full of eels” originates in a famous sketch by Monty Python’s
Flying Circus.

20 Programming and the Python Shell

>>> 2 3
File "<stdin>", line 1

2 3
^^^

SyntaxError: invalid syntax. Perhaps you forgot a comma?

That’s a clear-cut example of a syntax error in Python. Here’s another:

>>> = 5
File "<stdin>", line 1

= 5
^

SyntaxError: invalid syntax

Python makes it clear when we have syntax errors in our code. Usually
it can point to the exact position within a line where such an error occurs.
Sometimes, it can even provide suggestions, for example, “Perhaps you
forgot a comma?”

Semantics
On the other hand, semantics is about meaning. In English we may say

The ball is red.

We know there’s some object being referred to—a ball—and that an
assertion is being made about the color of the ball—red. This is fairly
straightforward.

Of course, it’s possible to construct ambiguous sentences in English.
For example (with apologies to any vegetarians who may be reading):

The turkey is ready to eat.

Does this mean that someone has cooked a turkey and that it is ready to
be eaten? Or does this mean that there’s a hungry turkey who is ready
to be fed? This kind of ambiguity is quite common in natural languages.
Not so with programming languages. If we’ve produced a syntactically
valid statement or expression, it has only one “interpretation.” There is
no ambiguity in programming.

Here’s another famous example, devised by the linguist Noam Chom-
sky:5

Colorless green ideas sleep furiously.

This is a perfectly valid English sentence with respect to syntax. How-
ever, it is meaningless, nonsensical. How can anything be colorless and
green at the same time? How can something abstract like an idea have
color? What does it mean to “sleep furiously”? Syntax: A-OK. Semantics:
nonsense.

5https://en.wikipedia.org/wiki/Noam_Chomsky

https://en.wikipedia.org/wiki/Noam_Chomsky

Introduction to binary numbers 21

Again, in programming, every syntactically valid statement or expres-
sion has a meaning. It is our job as programmers to write code which is
syntactically valid but also semantically correct.

What happens if we write something which is syntactically valid and
also semantically incorrect? It means that we’ve written code that does
not do what we intend for it to do. There’s a word for that: a bug.

Here’s an example. Let’s say we know the temperature in degrees
Fahrenheit, but we want to know the equivalent in degrees Celsius. You
may know the formula

𝐶 = 𝐹 − 32
1.8

where F is degrees Fahrenheit and C is degrees Celsius.
Let’s say we wrote this Python code.

f = 68.0 # 68 degrees Fahrenheit
c = (f - 32) * 1.8 # attempt conversion to Celsius
print(c) # print the result

This prints 64.8 which is incorrect! What’s wrong? We’re multiplying by
1.8 when we should be dividing by 1.8! This is a problem of semantics.
Our code is syntactically valid. Python interprets it, runs it, and produces
a result—but the result is wrong. Our code does not do what we intend
for it to do. Call it what you will—a defect, an error, a bug—but it’s a
semantic error, not a syntactic error.

To fix it, we must change the semantics—the meaning—of our code.
In this case the fix is simple.

f = 68.0 # 68 degrees Fahrenheit
c = (f - 32) / 1.8 # correct conversion to Celsius
print(c) # print the result

and now this prints 20.0 which is correct. Now our program has the
semantics we intend for it.

2.6 Introduction to binary numbers
You may know that computers use binary code to represent, well … ev-
erything. Everything stored on your computer’s disk or solid-state drive
is stored in binary form, a sequence of zeros and ones. All the programs
your computer runs are sequences of zeros and ones. All the photos you
save, all the music you listen to, even your word processing documents
are all zeros and ones. Colors are represented with binary numbers. Au-
dio waveforms are represented with binary numbers. Characters in your
word processing document are represented with binary numbers. All the
instructions executed and data processed by your computer are repre-
sented in binary form.

22 Programming and the Python Shell

Accordingly, as computer scientists, we need to understand how we rep-
resent numbers in binary form and how we can perform arithmetic oper-
ations on such numbers.

However, first, let’s review the familiar decimal system.

The decimal system
We’ve all used the decimal system.

The decimal system is a positional numeral system based on powers of
ten.6 What do we mean by that? In the decimal system, we represent

6In fact, the first positional numeral system, developed in ancient Babylonia
around 2000 BCE, used 60 as a base. Our base 10 system is an extension of the
Hindu-Arabic numeral system. Other cultures have used other bases. For example,
the Kewa counting system in Papua New Guinea is base 37—counting on fingers
and other parts of the body: heel of thumb, palm, wrist, forearm, etc, up to the top
of the head, and then back down the other side! See: Wolfers, E. P. (1971). “The

Introduction to binary numbers 23

numbers as coefficients in a sequence of powers of ten, where each coeffi-
cient appears in a position which corresponds to a certain power of ten.
(That’s a mouthful, I know.) This is best explained with an example.

Take the (decimal) number 8,675,309. Each digit is a coefficient in the
sequence

8 × 106 + 6 × 105 + 7 × 104 + 5 × 103 + 3 × 102 + 0 × 101 + 9 × 100

Recall that anything to the zero power is one—so, 100 = 1. If we do the
arithmetic we get the correct result:

8 × 106 = 8,000,000
6 × 105 = 0,600,000
7 × 104 = 0,070,000
5 × 103 = 0,005,000
3 × 102 = 0,000,300
0 × 101 = 0,000,000
9 × 100 = 0,000,009

and all that adds up to 8,675,309.
This demonstrates the power and conciseness of a positional numeral

system.
Notice that if we use base 10 for our system we need ten numerals to

use as coefficients. For base 10, we use the numerals 0, 1, 2, 3, 4, 5, 6, 7,
8, and 9.

However, apart from the fact that most of us conveniently have ten
fingers to count on, the choice of 10 as a base is arbitrary.

Computers and the binary system
As noted, computers use the binary system. This choice was originally
motivated by the fact that electronic components which can be in one of
two states are generally easier to design and implement than components
that can be in one of more than two states.

So how does the binary system work? It, too, is a positional numeral
system, but instead of using 10 as a base we use 2.

When using base 2, we need only two numerals: 0 and 1.
In the binary system, we represent numbers as coefficients in a se-

quence of powers of two. As with the decimal system, this is best ex-
plained with an example.

Take the decimal number 975. In binary this is 1111001111. That’s
1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25

+ 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 1 × 20

Again, doing the arithmetic

Original Counting Systems of Papua and New Guinea”, The Arithmetic Teacher,
18(2), 77-83, https://www.jstor.org/stable/41187615.

https://www.jstor.org/stable/41187615

24 Programming and the Python Shell

1 × 29 = 1000000000
1 × 28 = 0100000000
1 × 27 = 0010000000
1 × 26 = 0001000000
0 × 25 = 0000000000
0 × 24 = 0000000000
1 × 23 = 0000001000
1 × 22 = 0000000100
1 × 21 = 0000000010
1 × 20 = 0000000001

and that all adds up to 1111001111. To verify, let’s represent these values
in decimal format and check our arithmetic.

1 × 29 = 512
1 × 28 = 256
1 × 27 = 128
1 × 26 = 064
0 × 25 = 000
0 × 24 = 000
1 × 23 = 008
1 × 22 = 004
1 × 21 = 002
1 × 20 = 001

Indeed, this adds to 975.
Where in the decimal system we have the ones place, the tens place,

the hundreds place, and so on, in the binary system we have the ones
place, the twos place, the fours place, and so on.

How would we write, in binary, the decimal number 3? 11. That’s one
two, and one one.

How about the decimal number 10? 1010. That’s one eight, zero fours,
one two, and zero ones.

How about the decimal number 13? 1101. That’s one eight, one four,
zero twos, and one one.

Binary arithmetic
Once you get the hang of it, binary arithmetic is straightforward. Here’s
the most basic example: adding 1 and 1.

1
+ 1

1 0

Exercises 25

In the ones column we add one plus one, that’s two—binary 10—so we
write 0, carry 1 into the twos column, and then write 1 in the twos
column, and we’re done.

Now let’s add 1011 (decimal 11) and 11 (decimal 3).

1 0 1 1
+ 1 1

1 1 1 0
In the ones column we add one plus one, that’s two—binary 10—so we
write 0 and carry 1 into the twos column. Then in the twos column we
add one (carried) plus one, plus one, that’s three—binary 11—so we
write 1 and carry 1 into the fours column. In the fours column we add
one (carried) plus zero, so we write 1, and we have nothing to carry. In
the eights column we have only the single eight, so we write that, and
we’re done. To verify (in decimal):

1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 1 × 8 + 1 × 4 + 1 × 2 + 0 × 1
= 14

That checks out.

2.7 Exercises
Exercise 01
Write a line of Python code that prints your name to the console.

Exercise 02
Multiple choice: Python is a(n) ________ programming language.

a. compiled
b. assembly
c. interpreted
d. binary

Exercise 03
True or false? Code that you write in the Python shell is saved.

Exercise 04
How do you exit the Python shell?

Exercise 05
Python can operate in two different modes. What are these modes and
how do they differ?

26 Programming and the Python Shell

Exercise 06
The following is an example of what kind of code?

1001011011011011 1110010110110001 1010101010101111
1111000011110010 0000101101101011 0110111000110110

Exercise 07
Calculate the following sums in binary:

a. 10 + 1
b. 100 + 11
c. 11 + 11
d. 1011 + 10

After you’ve worked these out in binary, convert to decimal form and
check your arithmetic.

Exercise 08 (challenge!)
Try binary subtraction. What is 11011 - 1110? After calculating in binary,
convert to decimal and check your answer.

Chapter 3

Types and literals

This chapter will expand our understanding of programming by intro-
ducing types and literals. All objects in Python have a type, and literals
are fixed values of a given type. For example, the literal 1 is an integer
and is of type int (short for “integer”). Python has many different types.

Learning objectives
• You will learn about many commonly used types in Python.
• You will understand why we have different types.
• You will be able to write literals of various types.
• You will learn different ways to write string literals which include

various quotation marks within them.
• You will learn about representation error as it applies to numeric

types (especially floating-point values).

Terms introduced
• dynamic typing
• escape sequence
• empty string, empty tuple, and empty list
• heterogeneous
• literal
• representation error
• static typing
• “strong” vs “weak” typing
• type (including int, float, str, list, tuple, dict, etc.)
• type inference
• Unicode

27

28 Types and literals

3.1 What are types?
Consider the universe of wheeled motor vehicles. There are many types:
motorcycles, mopeds, automobiles, sport utility vehicles, busses, vans,
tractor-trailers, pickup trucks, all-terrain vehicles, etc., and agricultural
vehicles such as tractors, harvesters, etc. Each type has characteristics
which distinguish it from other types. Each type is suited for a particular
purpose (you wouldn’t use a moped to do the work of a tractor, would
you?).

Similarly, everything in Python has a type, and every type is suited
for a particular purpose. Python’s types include numeric types such as
integers and floating-point numbers; sequences such as strings, lists, and
tuples; Booleans (true and false); and other types such as sets, dictionar-
ies, ranges, and functions.

Why do we have different types in a programming language? Primarily
for three reasons.

First, different types have different requirements regarding how they
are stored in the computer’s memory (we’ll take a peek into this when
we discuss representation).

Second, certain operations may or may not be appropriate for different
types. For example, we can’t raise 5 to the 'pumpkin' power, or divide
'illuminate' by 2.

Third, some operators behave differently depending on the types of
their operands. For example, we’ll see in the next chapter how + is used
to add numeric types, but when the operands are strings + performs
concatenation. How does Python know what operations to perform and
what operations are permitted? It checks the type of the operands.

What’s a literal?
A literal is simply fixed values of a given type. For example, 1 is a literal.
It means, literally, the integer 1. Other examples of literals follow.

Some commonly used types in Python
Here are examples of some types we’ll see. Don’t worry if you don’t know
what they all are now—all will become clear in time.

Type Description Example(s) of literals
int integer 42, 0, -1

float floating-point
number

3.14159, 2.7182, 0.0

str string 'Python', 'badger', 'hovercraft'

bool Boolean True, False

NoneType none, no value None

tuple tuple (), ('a', 'b', 'c'), (-1, 1)

What are types? 29

Type Description Example(s) of literals

list list [], [1, 2, 3], ['foo', 'bar',
'baz']

dict dictionary (key:
value)

{'cheese': 'stilton'}, {'age': 99}

function function (see: Chapter 5)

int

The int type represents integers, that is, whole numbers, positive or
negative, and zero. Examples of int literals: 1, 42, -99, 0, 10000000, etc.
For readability, we can write integer literals with underscores in place
of thousands separators. For example, 1_000_000 is rather easier to read
than 1000000, and both have the same value.

float

Objects of the float type represent floating-point numbers, that is, num-
bers with decimal (radix) points. These approximate real numbers (to
varying degrees; see the section on representation error). Examples of
float literals: 1.0, 3.1415, -25.1, etc.

str

A string is an ordered sequence of characters. Each word on this page is
a string. So are "abc123" and "@&)z)$"—the symbols of a string needn’t
be alphabetic. In Python, objects of the str (string) type hold zero or
more symbols in an ordered sequence. Strings must be delimited to dis-
tinguish them from variable names and other identifiers which we’ll see
later. Strings may be delimited with single quotation marks, double quo-
tation marks, or “triple quotes.” Examples of str literals: "abc", "123",
"vegetable", "My hovercraft is full of eels.", """What nonsense is
this?""", etc.

Single and double quotation marks are equivalent when delimiting
strings, but you must be consistent in their use—starting and ending
delimiters must be the same. "foo" and 'foo' are both valid string literals;
"foo' and 'foo" are not.

>>> "foo'
File "<stdin>", line 1

"foo'
^

SyntaxError: unterminated string literal (detected at line 1)

30 Types and literals

It is possible to have a string without any characters at all! We call
this the empty string, and we write it '' or "" (just quotation marks with
nothing in between).

Triple-quoted strings have special meaning in Python, and we’ll see
more about that in Chapter 6, on style. These can also be used for
creating multi-line strings. Multi-line strings are handy for things like
email templates and longer text, but in general it’s best to use the single-
or double-quoted versions.

bool

bool type is used for two special values in Python: True and False. bool
is short for “Boolean”, named after George Boole (1815–1864), a largely
self-taught logician and mathematician, who devised Boolean logic—a
cornerstone of modern logic and computer science (though computers
did not yet exist in Boole’s day).

There are only two literals of type bool: True and False. Notice that
these are not strings, but instead are special literals of this type (so there
aren’t any quotation marks, and capitalization is significant).1

NoneType

NoneType is a special type in Python to represent the absence of a value.
This may seem a little odd, but this comes up quite often in programming.
There is exactly one literal of this type: None (and indeed there is exactly
one instance of this type).

Like True and False, None is not a string, but rather a special literal.

tuple

A tuple is an immutable sequence of zero or more values. If an object
is immutable, this means it cannot be changed once it’s been created.
Tuples are constructed using the comma to separate values. The empty
tuple, (), is a tuple containing no elements.

The elements of a tuple can be of any type—including another tuple!
The elements of a tuple needn’t be the same type. That is, tuples can be
heterogeneous.

While not strictly required by Python syntax (except in the case of
the empty tuple), it is conventional to write tuples with enclosing paren-
theses. Examples of tuples: (), (42, 71, 99), (x, y), ('cheese', 11,
True), etc.

A complete introduction to tuples appears in Chapter 10.

list

A list is a mutable sequence of zero or more values. If an object is muta-
ble, then it can be changed after it is created (we’ll see how to mutate
lists later). Lists must be created with square brackets and elements

1In some instances, it might be helpful to interpret these as “on” and “off” but
this will vary with context.

Dynamic typing 31

within a list are separated by commas. The empty list, [], is a list con-
taining no elements.

The elements of a list can be of any type—including another list! The
elements of a list needn’t be the same type. That is, like tuples, lists can
be heterogeneous.

Examples of lists: [], ['hello'], ’['Larry', 'Moe', 'Curly'], [3, 6,
9, 12], [a, b, c], [4, 'alpha', ()], etc.

A complete introduction to lists appears in Chapter 10.

dict

dict is short for dictionary. Much like a conventional dictionary, Python
dictionaries store information as pairs of keys and values. We write dictio-
naries with curly braces. Keys and values come in pairs, and are written
with a colon separating key from value.

There are significant constraints on dictionary keys (which we’ll see
later in Chapter 16). However, dictionary values can be just about
anything—including lists, tuples, and other dictionaries! Like lists, dic-
tionaries are mutable. Example:

{'Egbert': 19, 'Edwina': 22, 'Winston': 35}

A complete introduction to dictionaries appears in Chapter 16.

The first few types we’ll investigate are int (integer), float (floating-
point number), str (string), and bool (Boolean). As noted, we’ll learn
more about other types later.

For a complete reference of built-in Python types, see: https://docs
.python.org/3/library/stdtypes.html

3.2 Dynamic typing
You may have heard of “strongly typed” languages or “weakly typed”
languages. These terms do not have precise definitions, and they are of
limited utility. However, it’s not uncommon to hear people referring to
Python as a weakly typed language. This is not the case. If we’re going
to use these terms at all, Python exists toward the strong end of the
spectrum. Python prevents most type errors at runtime, and performs
very few implicit conversions between types—hence, it’s more accurately
characterized as being strongly typed.

Static and dynamic typing
Much more useful—and precise—are the concepts of static typing and
dynamic typing. Some languages are statically typed, meaning that types
are known at compile time—and types of objects (variables) cannot be
changed at runtime—the time when the program is run.

Python, however, is dynamically typed. This means that the types of
variables can change at runtime. For example, this works just fine in
Python:

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

32 Types and literals

>>> x = 1
>>> print(type(x))
<class 'int'>
>>> x = 'Hey! Now I am a string!'
>>> print(type(x))
<class 'str'>

This demonstrates dynamic typing. When we first create the variable
x, we assign to it the literal value 1. Python understands that 1 is an
integer, and so the result is an object of type 'int' (which is short for
“integer”). On the next line, we print the type of x, and Python prints:
<class 'int'> as we’d expect. Then, we assign a new value to x, and
Python doesn’t miss a beat. Since Python is dynamically typed, we can
change a variable’s type at runtime. When we assign to x the value 'Hey!
Now I am a string!', the type of x becomes 'str' (which is short for
“string”).

In statically typed languages (say, C or Java or Rust) if we were to
attempt something similar, we’d receive an error at compile time.

For example, in Java:

int x = 1;
x = "Hey! Now I am a string!";

would result in a compile-time error: “incompatible types:
java.lang.String cannot be converted to int”.

Notice that, unlike Python, when declaring a variable in Java a type
annotation must be supplied, and once something is declared as a given
type, that type cannot be changed.

It’s important to note that it’s not the type annotation

int x = 1

that makes Java statically typed. For example, other languages have type
inference but are still statically typed (Python has limited type inference).
Type inference is when the compiler or interpreter can infer something’s
type without having to be told explicitly “this is a string” or “this is an
integer.” For example, in Rust:

let x = 1;
x = "Hey! Now I am a string!";

would, again, result in a compile-time error: “mismatched types...
expected integer, found &str”.

While dynamic typing is convenient, this does place additional respon-
sibility on you the programmer. This is particularly true since Python,
unlike many other languages, doesn’t care a whit about the types of
formal parameters or return values of functions. Some languages ensure
that programmers can’t write code that calls a function with arguments
of the wrong type, or return the wrong type of value from a function.

Types and memory 33

Python does not. Python won’t enforce the correct use of types—that’s
up to you!

3.3 Types and memory
The details of how Python stores objects in memory is outside the scope
of this text. Nevertheless, a little peek can be instructive.

Figure 3.1: A sneak peek into an int object

Figure 3.1 includes a representation of an integer with value (decimal)
65. In binary, decimal 65 is represented as 01000001. That’s

0 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 0 × 23 + 0 × 22 + 0 × 21 + 1 × 20

Find 01000001 within the bitstring2 shown in Figure 3.1. That’s the
integer value.3

Figure 3.2 shows the representation of the string 'A'.4 The letter ‘A’
is represented with the value (code point) of 65.

2A bitstring is just a sequence of zeros and ones.
3Actually, the value is stored in two bytes 01000001 00000000 as shown within the

box in Figure 3.1. This layout in memory will vary with the particular implementa-
tion on your machine.

4Python uses Unicode encoding for strings. For reading on character encodings,
don’t miss Joel Spolsky’s “The Absolute Minimum Every Software Developer Abso-
lutely, Positively Must Know About Unicode and Character Sets (No Excuses!)”.

34 Types and literals

Figure 3.2: A sneak peek into a str object

Again, find 01000001 within the bitstring Figure 3.2—that’s the en-
coding of 'A'.

Apart from both representations containing the value 65 (01000001),
notice how different the representations of an integer and a string are!
How does Python know to interpret one as an integer and the other as a
string? The type information is encoded in this representation (that’s a
part of what all the other ones and zeros are). That’s how Python knows.
That’s one reason types are crucial!

Note: Other languages do this differently, and the representations
(above) will vary somewhat depending on your machine’s architecture.

Now, you don’t need to know all the details of how Python uses your
computer’s memory in order to write effective programs, but this should
give you a little insight into one reason why we need types. What’s
important for you as a programmer is to understand that different types
have different behaviors. There are things that you can do with an integer
that you can’t do with a string, and vice versa (and that’s a good thing).

More on string literals 35

3.4 More on string literals

Strings as ordered collections of characters
As we’ve seen, strings are ordered collections of characters, delimited
by quotation marks. But what kind of characters can be included in a
string?

Since Python 3.0, strings are composed of Unicode characters.5

Unicode, formally The Unicode Standard, is an information
technology standard for the consistent encoding, representa-
tion, and handling of text expressed in most of the world’s
writing systems. The standard, which is maintained by the
Unicode Consortium, defines as of the current version (15.0)
149,186 characters covering 161 modern and historic scripts,
as well as symbols, thousands of emoji (including in colors),
and non-visual control and formatting codes.6

That’s a lot of characters!
We won’t dive deep into Unicode, but you should be aware that

Python uses it, and that "hello", "Γειά σου", and "привіт" are all valid
strings in Python. Strings can contain emojis too!

Strings containing quotation marks or apostrophes
You’ve learned that in Python, we can use either single or double quota-
tion marks to delimit strings.

>>> 'Hello World!'
'Hello World!'
>>> "Hello World!"
'Hello World!'

Both are syntactically valid, and Python does not differentiate between
the two.

It’s not unusual that we have a string which contains quotation marks
or apostrophes. This can motivate our choice of delimiters.

For example, given the name of a local coffee shop, Speeder and Earl’s,
there are two ways we could write this in Python. One approach would
be to escape the apostrophe within a string delimited by single quotes:

>>> 'Speeder and Earl\'s'
"Speeder and Earl's"

Notice what’s going on here. Since we want an apostrophe within this
string, if we use single quotes, we precede the apostrophe with \. This

5You may have heard of Unicode, or perhaps ASCII (American Standard Code
for Information Interchange). ASCII was an early standard and in Python was su-
perseded in 2008 with the introduction of Python 3.

6https://en.wikipedia.org/wiki/Unicode

https://en.wikipedia.org/wiki/Unicode

36 Types and literals

is called escaping, and it tells Python that what follows should be in-
terpreted as an apostrophe and not a closing delimiter. We refer to the
string \', as an escape sequence.7

What would happen if we left that out?

>>> 'Speeder and Earl's'
Traceback (most recent call last):

...
File "<input>", line 1

'Speeder and Earl's'
^

SyntaxError: unterminated string literal (detected at line 1)

What’s going on here? Python reads the second single quote as the ending
delimiter, so there’s an extra—syntactically invalid—trailing s' at the
end.

Another approach is to use double quotations as delimiters.

>>> "Speeder and Earl's"
"Speeder and Earl's"

The same applies to double quotes within a string. Let’s say we wanted
to print

“Medium coffee, please”, she said.

We could escape the double quotes within a string delimited by double
quotes:

>>> "\"Medium coffee, please\", she said."
'"Medium coffee, please", she said.'

However, it’s a little tidier in this case to use single quote delimiters.

>>> '"Medium coffee, please", she said.'
'"Medium coffee, please", she said.'

What happens if we have a string with both apostrophes
and double quotes?
Say we want the string

“I’ll have a Speeder’s Blend to go”, she said.

What now? Now we must use escapes. Either of the following work:

7Escape sequence is a term whose precise origins are unknown. It’s generally un-
derstood to mean that we use these sequences to “escape” from the usual meaning
of the symbols used. In this particular context, it means we don’t treat the apostro-
phe following the slash as a string delimiter (as it would otherwise be treated), but
rather as a literal apostrophe.

Representation error of numeric types 37

>>> '"I\'ll have a Speeder\'s Blend to go", she said.'
'"I\'ll have a Speeder\'s Blend to go", she said.'
>>> print('"I\'ll have a Speeder\'s Blend to go", she said.')
"I'll have a Speeder's Blend to go", she said.

or

>>> "\"I'll have a Speeder's Blend to go\", she said."
'"I\'ll have a Speeder\'s Blend to go", she said.'
>>> print("\"I'll have a Speeder's Blend to go\", she said.")
"I'll have a Speeder's Blend to go", she said.

Not especially pretty, but there you have it.

More on escape sequences
We’ve seen how we can use the escape sequences \' and \" to avoid
having the apostrophe and quotation mark treated as string delimiters,
thereby allowing us to use these symbols within a string literal.

There are other escape sequences which work differently. The escape
sequences \n and \t are used to insert a newline or tab character into
a string, respectively. The escape sequence \\ is used to insert a single
backslash into a string.

Escape sequence meaning
\n newline
\t tab
\\ backslash
\' single quote / apostrophe
\" double quote

Python documentation for strings
For more, see the Python documentation for strings, including An Infor-
mal Introduction to Python8 and Lexical Analysis.9

3.5 Representation error of numeric types
Representation error occurs when we try to represent a number using a
finite number of bits or digits which cannot be accurately represented in
the system chosen. For example, in our familiar decimal system:

8https://docs.python.org/3/tutorial/introduction.html#strings
9https://docs.python.org/3/reference/lexical_analysis.html#literals

https://docs.python.org/3/tutorial/introduction.html#strings
https://docs.python.org/3/reference/lexical_analysis.html#literals

38 Types and literals

number decimal representation representation error
1 1 0
1/3 0.3333333333333333 0.0000000000000000333…
1/7 0.1428571428571428 0.0000000000000000571428…

Natural numbers, integers, rational numbers, and real
numbers
You probably know that the set of all natural numbers

ℕ = {0, 1, 2, 3, …}
is infinite.

From there it’s not a great leap to see that the set of all integers
ℤ = {… , −2, −1, 0, 1, 2, …}

is infinite too.
The rational numbers, ℚ, and set of all real numbers, ℝ, also are

infinite.
This fact—that these sets are of infinite size—has implications for

numeric representation and numeric calculations on computers.
When we work with computers, numbers are given integer or floating-

point representations. For example, in Python, we have distinct types,
int and float, for holding integer and floating-point numbers, respec-
tively.

I won’t get into too much detail about how these are represented in
binary, but here’s a little bit of information.

Integers
Representation of integers is relatively straightforward. Integers are rep-
resented as binary numbers with a position set aside for the sign. So,
12345 would be represented as 00110000 00111001. That’s

0 × 215 + 0 × 214 + 1 × 213 + 1 × 212

+ 0 × 1011 + 0 × 1010 + 0 × 109 + 0 × 108

+ 0 × 106 + 1 × 25 + 1 × 24 + 1 × 23

+ 0 × 22 + 0 × 21 + 1 × 20

This works out to
8192 + 4096 + 32 + 16 + 8 + 1 = 12345.

Negative integers are a little different. If you’re curious about this, see
the Wikipedia article on Two’s Complement.

Representation error of numeric types 39

Floating-point numbers and IEEE 754
Floating-point numbers are a little tricky. Stop and think for a minute:
How would you represent floating-point numbers? (It’s not as straight-
forward as you might think.)

Floating-point numbers are represented using the IEEE 754 standard
(IEEE stands for “Institute of Electrical and Electronics Engineers”).10

There are three parts to this representation: the sign, the exponent, and
the fraction (also called the mantissa or significand)—and all of these
must be expressed in binary. IEEE 754 uses either 32 or 64 bits for
representing floating point numbers. The issue with representation lies
in the fact that there’s a fixed number of bits available: one bit for the sign
of a number, eight bits for the exponent, and the rest for the fractional
portion. With a finite number of bits, there’s a finite number of values
that can be represented without error.

Examples of representation error
Now we have some idea of how integers and floating-point numbers are
represented in a computer. Consider this: We have some fixed number of
bits set aside for these representations.11 So we have a limited number
of bits we can use to represent numbers on a computer. Do you see the
problem?

The set of all integers, ℤ, is infinite. The set of all real numbers, ℝ, is
infinite. Any computer we can manufacture is finite. Now do you see the
problem?

There exist infinitely more integers, and infinitely more real numbers,
than we can represent in any system with a fixed number of bits. Let
that soak in.

For any given machine or finite representation scheme, there are in-
finitely many numbers that cannot be represented in that system! This
means that many numbers are represented by an approximation only.

Let’s return to the example of 1/3 in our decimal system. We can
never write down enough digits to the right of the decimal point so that
we have the exact value of 1/3.

0.333333333333333333333 …
No matter how far we extend this expansion, the value will only be an
approximation of 1/3. However, the fact that its decimal expansion is
non-terminating is determined by the choice of base (10).

What if we were to represent this in base 3? In base 3, decimal 1/3 is
0.1. In base 3, it’s easy to represent!

Of course our computers use binary, and so in that system (base
2) there are some numbers that can be represented accurately, and an
infinite number that can only be approximated.

Here’s the canonical example, in Python:

10For more, see: https://en.wikipedia.org/wiki/IEEE_754
11That’s not entirely true for integers in Python, but it’s reasonable to think of

it this way for the purpose at hand.

https://en.wikipedia.org/wiki/IEEE_754

40 Types and literals

>>> 0.1
0.1
>>> 0.2
0.2
>>> 0.1 + 0.2
0.30000000000000004

Wait! What? Yup. Something strange is going on. Python rounds values
when displaying in the shell. Here’s proof:

>>> print(f'{0.1:.56f}')
0.10000000000000000555111512312578270211815834045410156250
>>> print(f'{0.2:.56f}')
0.20000000000000001110223024625156540423631668090820312500
>>> print(f'{0.1 + 0.2:.56f}')
0.30000000000000004440892098500626161694526672363281250000

The last, 0.1 + 0.2, is an example of representation error that accu-
mulates to the point that it is no longer hidden by Python’s automatic
rounding, hence

>>> 0.1 + 0.2
0.30000000000000004

Remember we only work with powers of two. So there’s no way to
accurately represent these numbers in binary with a fixed number of
decimal places.

What’s the point?
1. The subset of real numbers that can be accurately represented

within a given positional system depends on the base chosen (1/3
cannot be represented without error in the decimal system, but it
can be in base 3).

2. It’s important that we understand that no finite machine can rep-
resent all real numbers without error.

3. Most numbers that we provide to the computer and which the
computer provides to us in the form of answers are only approxi-
mations.

4. Perhaps most important from a practical standpoint, representa-
tion error can accumulate with repeated calculations.

5. Understanding representation error can prevent you from chasing
bugs when none exist.

For more, see:

• Floating Point Arithmetic: Issues and Limitations: https://docs.p
ython.org/3.10/tutorial/floatingpoint.html.

https://docs.python.org/3.10/tutorial/floatingpoint.html
https://docs.python.org/3.10/tutorial/floatingpoint.html

Exercises 41

3.6 Exercises
Exercise 01
Give the type of each of the following literals:

a. 42
b. True
c. "Burlington"
d. -17.45
e. "100"
f. "3.141592"
g. "False"

You may check your work in the Python shell, using the built-in function
type(). For example,

>>> type(777)
<class 'int'>

This tells us that the type of 777 is int.

Exercise 02
What happens when you enter the following in the Python shell?

a. 123.456.789
b. 123_456_789
c. hello
d. "hello'
e. "Hello" "World!" (this one may surprise you!)
f. 1,000 (this one, too, may surprise you!)
g. 1,000.234
h. 1,000,000,000
i. '1,000,000,000'

Exercise 03
The following all result in SyntaxError. Fix them!

a. 'Still the question sings like Saturn's rings'
b. "When I asked him what he was doing, he said "That isn't any

business of yours.""
c. 'I can't hide from you like I hide from myself.'
d. What's up, doc?

Exercise 04 (challenge!)
We’ve seen that representation error occurs for most floating-point deci-
mal values. Can you find values in the interval [0.0, 1.0) that do not have
representation error? Give three or four examples. What do all these
examples have in common?

Chapter 4

Variables, statements, and
expressions

This chapter will expand our understanding of programming by introduc-
ing types and literals. We’ll also learn about two additional arithmetic
operators: floor division using the // operator (also called Euclidean di-
vision or integer division), and the modulo operator % (also called the
remainder operator). Please note that the modulo operator has noth-
ing to do with calculating percentages—this is a common confusion for
beginners.

Learning objectives
• You will learn how to use the assignment operator and how to

create and name variables.
• You will learn how to use the addition, subtraction, multiplication,

division, and exponentiation operators.
• You will learn the difference between and use cases of division and

Euclidian division (integer division).
• You will learn how to use the remainder or “modulo” operator.
• You will learn operator precedence in Python.

Terms introduced
• absolute value
• assignment
• congruence
• dividend
• divisor
• Euclidean division
• evaluation
• exception
• expression
• floor function
• modulus
• names
• operator

43

44 Variables, statements, and expressions

• quotient
• remainder
• statement
• variable

4.1 Variables and assignment
You have already written a “Hello, World!” program. As you can see,
this isn’t very flexible—you provided the exact text you wanted to print.
However, more often than not, we don’t know the values we want to
use in our programs when we write them. Values may depend on user
input, database records, results of calculations, and other sources that
we cannot know in advance when we write our programs.

Imagine writing a program to calculate the sum of two numbers and
print the result. We could write,

print(1 + 1)
print(2 + 2)
...

but that’s really awkward. For every sum we want to calculate, we’d have
to write another statement.

So when we write computer programs we use variables. In Python, a
variable is the combination of a name and an associated value which
has a specific type.1

It’s important to note that variables in a computer program are not
like variables you’ve learned about in mathematics. For example, in math-
ematics we might write 𝑎+𝑏 = 5 and, of course, there’s an infinite number
of possible pairs of values which sum to five.

When writing computer programs, variables are rather different.
While the same name can refer to different values at different times,
a name can refer to only one value at a time.

Assignment statements
In Python, we use the = to assign a value to a variable, and we call = the
assignment operator. The variable name is on the left-hand side of the
assignment operator, and the expression (which yields a value) is on the
right-hand side of the assignment operator.

a = 3 # the variable named `a` has the value 3
print(a) # prints 3 to the console
a = 17 # now the variable named `a` has the value 17
print(a) # prints 17 to the console

1Python differs from most other programming languages in this regard. In many
other programming languages, variables refer to memory locations which hold values.
(Yes, deep down, this is what goes on “under the hood” but the paradigm from the
perspective of those writing programs in Python is that variables are names attached
to values.) Feel free to check the entry in the glossary for more.

Variables and assignment 45

Assignment is a kind of statement in Python. Assignment statements
associate a name with a value (or, in certain cases, can modify a value).

Beginners often get confused about the assignment operator. You may
find it helpful to think of it as a left-pointing arrow.2 When reading your
code, for example

a = 42

it may help to say, “Let a equal 42”, or “a gets 42”, rather than “a equals
42” (which sounds more like a claim or assertion about the value of a).
This can reinforce the concept of assignment.3

Dynamic typing
In Python, all values have a type, and Python knows the type of each
value at every instant. However, Python is a dynamically typed language.
This means that any given name can refer to values of different types at
different points in a program. So this is valid Python:

a = 42 # now `a` is of type int
print(a) # prints 42 to the console
a = 'abc' # now `a` is of type str
print(a) # prints 'abc' to the console

Evaluation and assignment
Sometimes we can use a variable in some calculation and reassign the
result. For example:

x = 0
print(x) # prints 0 to the console
x = x + 1
print(x) # prints 1 to the console
x = x + 1
print(x) # prints 2 to the console

What’s going on here? Remember, = is the assignment operator. So in
the code snippet above, we’re not making assertions about equivalence;
instead, we’re assigning values to x. With:

x = 0

2In fact, the left-facing arrow is commonly used to indicate assignment in pseu-
docode—descriptions of algorithms outside the context of any particular program-
ming language.

3Later on, we’ll see the comparison operator ==. This is used to compare two
values to see if they are identical. For example, a == b would be true if the values of
a and b were the same. So it’s important to keep the assignment (=) and comparison
(==) operators straight in your mind.

46 Variables, statements, and expressions

we’re assigning the literal value 0 to x. At this point we can say the value
of x is 0.

Consider what happens here:

x = x + 1

So first, Python will evaluate the expression on the right, and then it
will assign the result to x. At the start, the value of x is still zero, so we
can think of Python substituting the value of x for the object x on the
right hand side.

x = 0 + 1

and then evaluating the right-hand side:

x = 1

and assigning the result to x. Now the value of x is 1. If we do it again,

x = x + 1

now the x on the right has the value 1, and 1 + 1 is 2, so the variable x
has the value 2.

Variables are names associated with values
What are variables in Python? Variables work differently in Python than
they do in many other languages. Again, in Python, a variable is a name
associated with a value.

Consider this code:

>>> x = 1001
>>> y = x

What we’ve done here is give two different names to the same value. This
is A-OK in Python. What does x refer to? The value 1001. What does
y refer to? The exact same 1001.4 It is not the case that there are two
different locations in memory both holding the value 1001 (as might be
the case in a different programming language).

Now what happens if we assign a new value to x? Does y “change”?
What do you think?

>>> x = 2001
>>> x
2001
>>> y
1001

4We can verify this by inspecting the identity number of the object(s) in question
using Python’s built-in id() function.

Variables and assignment 47

No. Even though x now has the new value of 2001, y is unchanged and
still has the value of 1001.

When we assign a value to a variable,

>>> x = 1001

what’s really going on is that we’re associating a name with a value. In
the above example, 1001 is the value, and x is a name we’ve given to it.

Values can have more than one name associated with them. In fact,
we can give any number of names to the same value.

>>> x = 1001
>>> y = x
>>> z = y

Now what happens if we assign a new value to x?

>>> x = 500
>>> x
500
>>> y
1001
>>> z
1001

y and z are still names for 1001, but now the name x is associated with
a new value, 500.

While it’s true that values can have more than one name associated
with them, it’s important to understand that each name can only refer
to a single value (or object). x can’t have two different values at the same
time.

>>> x = 3
>>> x
3
>>> x = 42 # What happened to 3? Gone forever.
>>> x
42

48 Variables, statements, and expressions

Comprehension check
Given the following snippets of Python code, determine the resulting
value x:

1.

x = 1

2.

x = 1
x = x + 1

3.

y = 200
x = y

4.

x = 0
x = x * 200

5.

x = 1
x = 'hello'

6.

x = 5
y = 3
x = x + 2 * y - 1

Constants
A lot of the time in programming, we want to use a specific value or
calculation multiple times. Instead of repeating that same value or cal-
culation over and over again, we can just assign the value to a variable
and reuse it throughout a program. We call this constant. A constant
is a variable that has a value that will be left unchanged throughout a
program. Using constants improves the readability of programs because
they provide meaningful and recognizable names for fixed values. Let’s
look at an example:

HOURS_IN_A_DAY = 24

Expressions 49

Here we have assigned the variable HOURS_IN_A_DAY to 24. This variable
is a constant because the number of hours in a day will always be 24 (at
least for the foreseeable future). Now if we need to do some calculation
using the number of hours in a day, we can just use this variable. Note
that constants are uppercase. This isn’t enforced by Python, but it’s
good common practice.

4.2 Expressions
In programming—and computer science in general—an expression is
something which can be evaluated—that is, a syntactically valid combi-
nation of constants, variables, functions, and operators which yields a
value.

Let’s try out a few expressions with the Python shell.

Literals and types revisited
The simplest possible expression is a single literal.

>>> 1
1

What just happened? We typed a simple expression—a single literal—
and Python replied with its value. Literals are special in that they eval-
uate to themselves!

Here’s another:

>>> 'Hello, Python!'
'Hello, Python!'

Once again, we’ve provided a single literal, and again, Python has replied
with its value.

You may notice that 'Hello, Python!' is rather different from 1. You
might say these are literals of different types—and you’d be correct! Liter-
als come in different types. Here are four different literals of four different
types.

'Hello, Python' string (str)
1 integer (int)
3.141592 floating-point (float)
True Boolean (bool)

'Hello, Python!' is a string literal. The quotation marks delimit the
string. They let Python know that what’s between them is to be inter-
preted as a string, but they are not part of the string itself. Python allows
single-quoted or double-quoted strings, so "Hello, Python!" and 'Hello,
Python!' are both syntactically correct. Note that if you start with a
single quote (’), you must end with a single quote. Likewise, if you start
with a double quote (“), you must end with a double quote.

50 Variables, statements, and expressions

1 is different. It is an integer literal. Notice that there are no quotation
marks around it.

Given all this, the latter two examples work as you’d expect.

>>> 3.141592
3.141592
>>> True
True

What types are these? 3.141592 is a floating point literal (that’s a number
that has something to the right of the decimal point). True is what’s called
a Boolean literal. Notice there are no quotation marks around it and the
first letter is capitalized. True and False are the only two Boolean literals.

Expressions with arithmetic operators
Let’s try some more complex expressions. In order to construct more
complex expressions we’ll use some simple arithmetic operators, specifi-
cally some binary infix operators. These should be very familiar. A binary
operator is one which operates on two operands. The term infix means
that we put the operator between the operands.

>>> 1 + 2
3

Surprised? Probably not. But let’s consider what just happened any-
way.

At the prompt, we typed 1 + 2 and Python responded with 3. 1 and
2 are integer literals, and + is the operator for addition. 1 and 2 are the
operands, and + is the operator. This combination 1 + 2 is a syntactically
valid Python expression which evaluates to… you guessed it, 3.

Some infix arithmetic operators in Python are:

+ addition
- subtraction
* multiplication (notice we use * and not x)
/ division
// integer or “floor” division
% remainder or “modulo”
** exponentiation

There are other operators, but these will suffice for now. Here we’ll
present examples of the first four, and we’ll present the others later—
floor division, modulo, and exponentiation. Let’s try a few (I encourage
you follow along and try these out in the Python shell as we go).

>>> 40 + 2
42
>>> 3 * 5
15

Expressions 51

>>> 5 - 1
4
>>> 30 / 3
10.0

Notice that in the last case, when performing division, Python returns
a floating-point number and not an integer (Python does support what’s
called integer division or floor division, but we’ll get to that later). So
even if we have two integer operands, division yields a floating-point
number.

What do you think would be the result if we were to add the following?

>>> 1 + 1.0

In a case like this, Python performs implicit type conversion, essentially
promoting 1 to 1.0 so it can add like types. Accordingly, the result is:

>>> 1 + 1.0
2.0

Python will perform similar type conversions in similar contexts:

>>> 2 - 1.0
1.0
>>> 3 * 5.0
15.0

Precedence of operators
No doubt you’ve learned about precedence of operations, and Python
respects these rules.

>>> 40 + 2 * 3
46
>>> 3 * 5 - 1
14
>>> 30 - 18 / 3
24.0

Multiplication and division have higher precedence than addition and
subtraction. We also say multiplication and division bind more strongly
than addition and subtraction—this is just a different way of saying the
same thing.

As you might expect, we can use parentheses to group expressions.
We do this to group operations of lower precedence—either in order to
perform the desired calculation, or to disambiguate or make our code
easier to read, or both.

52 Variables, statements, and expressions

>>> 40 + (2 * 3)
46
>>> 3 * (5 - 1)
12
>>> (30 - 18) / 3
4.0

So what happens here? The portions within the parentheses are eval-
uated first, and then Python performs the remaining operation.

We can construct expressions of arbitrary complexity using these
arithmetic operators and parentheses.

>>> (1 + 1) * (1 + 1 + 1) - 1
5

Python also has unary operators. These are operators with a single
operand. For example, we negate a number by prefixing -.

>>> -1
-1
>>> -1 + 3
2
>>> 1 + -3
-2

We can also negate expressions within parentheses.

>>> -(3 * 5)
-15

Summary of operator precedence

** exponentiation
+, - unary positive or negative (+x, -x)

*, /, //, % multiplication, and various forms of division
+, - addition and subtraction (x - y, x + y)

Expressions grouped within parentheses are evaluated first, so the rule
you might have learned in high school and its associated mnemonic—
PEMDAS (parentheses, exponentiation, multiplication and division, ad-
dition and subtraction)—apply.

Expressions 53

Comprehension check
1. When evaluating expressions, do you think Python proceeds left-to-

right or right-to-left? Can you think of an experiment you might
perform to test your hypothesis? Write down an expression that
might provide some evidence.

2. Why do you think 1 / 1 evaluates to 1.0 (a float) and not just 1
(an integer)?

More on operations
So far, we’ve seen some simple expressions involving literals, operators,
and parentheses. We’ve also seen examples of a few types: integers,
floating-point numbers (“floats” for short), strings, and Booleans.

We’ve seen that we can perform arithmetic operations on numeric
types (integers and floats).

The operators + and * applied to strings
Certain arithmetic operators behave differently when their operands are
strings. For example,

>>> 'Hello' + ', ' + 'World!'
'Hello, World!'

This is an example of operator overloading, which is just a fancy way
of saying that an operator behaves differently in different contexts. In
this context, with strings as operands, + doesn’t perform addition, but
instead performs concatenation. Concatenation is the joining of two or
more strings, like the coupling of railroad cars.

We can also use the multiplication operator * with strings. In the
context of strings, this operator concatenates multiple copies of a string
together.

>>> 'Foo' * 1
'Foo'
>>> 'Foo' * 2
'FooFoo'
>>> 'Foo' * 3
'FooFooFoo'

What do you think would be the result of the following?

>>> 'Foo' * 0

This gives us '' which is called the empty string and is the result of
concatenating zero copies of 'Foo' together. Notice that the result is
still a string, albeit an empty one.

54 Variables, statements, and expressions

4.3 Augmented assignment operators
As a shorthand, Python provides what are called augmented assignment
operators. Here are some (but not all):

augmented assignment similar to
a += b a = a + b
a -= b a = a - b
a *= b a = a * b

A common example is incrementing or decrementing by one.

>>> a = 0
>>> a += 1
>>> a
1
>>> a += 1
>>> a
2
>>> a -= 1
>>> a
1
>>> a -= 1
>>> a
0

You can use these or not, depending on your own preference.5

4.4 Euclidean or “floor” division
When presenting expressions, we saw examples of common arithmetic op-
erations: addition, subtraction, multiplication, and division. Here we will
present two additional operations which are closely related: the modulo
or “remainder” operator, and what’s variously called “quotient”, “floor
division”, “integer division” or “Euclidean division.”6

Chances are, when you first learned division in primary school, you
learned about Euclidean (floor) division. For example, 17 ÷ 5 = 3 r 2, or
21 ÷ 4 = 5 r 1. In the latter example, we’d call 21 the dividend, 4 the
divisor, 5 the quotient, and 1 the remainder.

5The table above says “similar to” because, for example, a += b isn’t exactly the
same as a = a + b. In augmented assignment, the left-hand side is evaluated before
the right-hand side, then the right-hand side is evaluated and the result is assigned
to the variable on the left-hand side. There are some other minor differences.

6Euclid had many things named after him, even if he wasn’t the originator
(I guess fame begets fame). Anyhow, Euclid was unaware of the division algorithm
you’re taught in primary school. Similar division algorithms depend on the positional
system of Hindu-Arabic numerals, and these date from around the 12th Century CE.
The algorithm you most likely learned, called “long division”, dates from around
1600 CE.

Euclidean or “floor” division 55

Obviously the operations of finding the quotient and the remainder
are closely related. For any two integers 𝑎, 𝑏, with 𝑏 ≠ 0 there exist
unique integers 𝑞 and 𝑟 such that

𝑎 = 𝑏𝑞 + 𝑟
where 𝑞 is the Euclidean quotient and 𝑟 is the remainder.
Furthermore, 0 ≤ 𝑟 < |𝑏|, where |𝑏| is the absolute value of 𝑏. This should
be familiar.

Just in case you need a refresher:

56 Variables, statements, and expressions

Python’s // and % operators
Python provides us with operators for calculating quotient and remain-
der. These are // and %, respectively. Here are some examples:

>>> 17 // 5 # calculate the quotient
3
>>> 17 % 5 # calculate the remainder
2
>>> 21 // 4 # calculate the quotient
5
>>> 21 % 4 # calculate the remainder
1

You may ask: What’s the difference between the division we saw ear-
lier, /, and floor division with //? The difference is that / calculates the
quotient as a decimal expansion. Here’s a simple comparison:

>>> 4 / 3
1.3333333333333333 # three goes into four 1 and 1/3 times
>>> 4 // 3 # calculates Euclidean quotient
1
>>> 4 % 3 # calculates remainder
1

Common questions
What happens when the divisor is zero?
Just as in mathematics, we cannot divide by zero in Python either. So
all of these operations will fail if the right operand is zero, and Python
will complain: ZeroDivisionError.

What happens if we supply floating-point operands to // or %?
In both cases, operands are first converted to a common type. So if
one operand is a float and the other an int, the int will be implicitly
converted to a float. Then the calculations behave as you’d expect.

Euclidean or “floor” division 57

>>> 7 // 2 # if both operands are ints, we get an int
3
>>> 7.0 // 2 # otherwise, we get a float...
3.0
>>> 7 // 2.0
3.0
>>> 7.0 // 2.0
3.0
>>> 7 % 2 # if both operands are ints, we get an int
1
>>> 7.0 % 2 # otherwise, we get a float...
1.0
>>> 7 % 2.0
1.0
>>> 7.0 % 2.0
1.0

What if the dividend is zero?
What are 0 // n and 0 % n?

>>> 0 // 5 # five goes into zero zero times
0
>>> 0 % 5 # the remainder is also zero
0

What if the dividend is less than the divisor?
What are m // n and m % n, when 𝑚 < 𝑛, with 𝑚 and 𝑛 both integers,
and 𝑚 ≥ 0, 𝑛 > 0?

The first one’s easy: if 𝑚 < 𝑛?, then m // n yields zero. The other
trips some folks up at first.

>>> 5 % 7
5

That is, seven goes into five zero times and leaves a remainder of five.
So if 𝑚 < 𝑛, then m % n yields m.

What if the divisor is negative?
What is m % n, when 𝑛 < 0? This might not work the way you’d expect
at first.

>>> 15 // -5
-3
>>> 15 % -5
0

So far, so good. Now consider:

58 Variables, statements, and expressions

>>> 17 // -5
-4
>>> 17 % -5
-3

Why does 17 // -5 yield -4 and not -3? Remember that this is
what’s called “floor division.” What Python does, is that it calculates
the (floating-point) quotient and then applies the floor function.

The floor function is a mathematical function which, given some num-
ber 𝑥, returns the largest integer less than or equal to 𝑥. In mathematics
this is written as:

⌊𝑥⌋.
So in the case of 17 // -5, Python first converts the operands to

float type, then calculates the (floating-point) quotient, which is −3.4
and then applies the floor function, to yield −4 (since -4 is the largest
integer less than or equal to -3.4).

This also makes clear why 17 % -5 yields -3. This preserves the equality
𝑎 = 𝑏𝑞 + 𝑟

17 = (−5 × −4) + (−3)
17 = 20 − 3.

What if the dividend is negative?

>>> -15 // 5
-3
>>> -15 % 5
0

So far so good. Now consider:

>>> -17 // 5
-4
>>> -17 % 5
3

Again, Python preserves the equality
𝑎 = 𝑏𝑞 + 𝑟

−17 = (5 × −4) + 3
−17 = −20 + 3.

Yeah. I know. These take a little getting used to.

What if dividend and divisor both are negative?
Let’s try it out—having seen the previous examples, this should come as
no surprise.

Modular arithmetic 59

>>> -43 // -3
14
>>> -43 % -3
-1

Check this result:
𝑎 = 𝑏𝑞 + 𝑟

−43 = (−3 × 14) + (−1)
−43 = −42 − 1

The % operator will always yield a result with the same sign as the
second operand (or zero).

You are encouraged to experiment with the Python shell. It is a great
tool to further your understanding.

4.5 Modular arithmetic
Now, in the Python documentation7, you’ll see // referred to as floor
division. You’ll also see that % is referred to as the modulo operator.

It’s fine to think about % as the remainder operator (with the provisos
noted above), but what is a “modulo operator”?

Let’s start with the example of clocks.

Figure 4.1: Clock face

Perhaps you don’t realize it, but you do modular arithmetic in your
head all the time. For example, if you were asked what time is 5 hours
after 9 o’clock, you’d answer 2 o’clock. You wouldn’t say 14 o’clock.8
This is an example of modular arithmetic. In fact, modular arithmetic is
sometimes called “clock arithmetic.”

7https://docs.python.org/3/reference/expressions.html
8OK. Maybe in the military or in Europe you might, but you get the idea. We

have a clock with numbers 12–11, and 12 hours brings us back to where we started
(at least as far as the clock face is concerned). Notice also that the arithmetic is the
same for an analog clock face with hands and a digital clock face. This difference
in interface doesn’t change the math at all, it’s just that visually things work out
nicely with the analog clock face.

https://docs.python.org/3/reference/expressions.html

60 Variables, statements, and expressions

Figure 4.2: Clock arithmetic: 5 + 9 ≡ 2 (mod 12)

In mathematics, we would say that 5 + 9 is congruent to 2 modulo 12,
and we’d write

5 + 9 ≡ 2 (mod 12)
So 5 + 9 = 14 and 14 ÷ 12 has a remainder of 2.

Here’s another example:

Figure 4.3: Clock arithmetic: 11 + 6 ≡ 5 (mod 12)

Similarly, we’d say that 11 + 6 is congruent to 5 modulo 12, and we’d
write

11 + 6 ≡ 5 (mod 12)
Let’s think of this a little more formally. Suppose we have some pos-

itive integer, 𝑛, which we call the modulus. We can perform arithmetic
with respect to this integer in the following way. When counting, when
we reach this number we start over at 0. Now in the case of clocks, this
positive integer is 12, but it needn’t be—we could choose any positive
integer.

For example, with 𝑛 = 5, we’d count
0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, …

Notice that we never count to 5, we start over at zero. You’ll see that the
clocks in the figures above don’t have twelve on their face but instead
have zero. If 𝑛 = 5, then we’d have 5 positions on our “clock”, numbered
0 through 4.
Under such a system, addition and subtraction would take on a new
meaning. For example, with 𝑛 = 5, 4 + 1 ≡ 0 (mod 5),
4 + 2 ≡ 1 (mod 5),
4 + 3 ≡ 2 (mod 5),
and so on.

Things work similarly for subtraction, except we proceed anti-
clockwise. For example 1 − 3 ≡ 3 (mod 5).

The same principle applies to multiplication: 2 × 4 ≡ 3 (mod 5) and
3 × 3 ≡ 4 (mod 5).

Modular arithmetic 61

0

1

23

4

Figure 4.4: A “clock” for (mod 5)

0

1

23

4

Figure 4.5: 4 + 1 ≡ 0 (mod 5)

0

1

23

4

Figure 4.6: 4 + 2 ≡ 1 (mod 5)

62 Variables, statements, and expressions

0

1

23

4

Figure 4.7: 4 + 3 ≡ 2 (mod 5)

0

1

23

4

Figure 4.8: 1 − 3 ≡ 3 (mod 5)

Negative modulus
We’ve seen that when we add we go clockwise, and when we subtract we
go anti-clockwise. What happens when the modulus is negative?

To preserve the “direction” of addition (clockwise) and subtraction
(anti-clockwise), if our modulus is negative we number the face of the
clock anti-clockwise.

Examples:
1 ≡ −4 (mod − 5)
2 ≡ −3 (mod − 5)
2 + 4 ≡ −4 (mod − 5)
We can confirm these agree with Python’s evaluation of these expres-

sions:

>>> 1 % -5
-4
>>> 2 % -5

Modular arithmetic 63

0

−4

−3−2

−1

Figure 4.9: A “clock” for (mod -5)

0

−4

−3−2

−1

Figure 4.10: 1 ≡ −4 (mod − 5)

Figure 4.11: 2 ≡ −3 (mod − 5)

64 Variables, statements, and expressions

0

−4

−3−2

−1

Figure 4.12: 2 + 4 ≡ −4 (mod − 5)

-3
>>> (4 + 2) % -5
-4

Why did I put (4 + 2) in parentheses? Because % has higher precedence
than +. Again, try inputting your own expressions into the Python shell.

Some things to note
• If the modulus is an integer, 𝑛 > 0, then the only possible remain-

ders are [0, 1, ..., 𝑛 − 1].
• If the modulus is an integer, 𝑛 < 0, then the only possible remain-

ders are [𝑛 + 1, ..., −1, 0].

What now?
This is actually a big topic, involving equivalence classes, remainders (in
this context, called “residues”), and others. That’s all outside the scope
of this textbook. Practically, however, there are abundant applications
for modular arithmetic, and this is something we’ll see again and again
in this text.

Some applications for modular arithmetic include:

• Hashing function
• Cryptography
• Primality and divisibility testing
• Number theory

Here are a couple of simple examples.

Example: eggs and cartons
Jenny has 𝑛 eggs. If a carton holds 12 eggs, how many complete cartons
can she make and how many eggs will be left over?

Modular arithmetic 65

EGGS_PER_CARTON = 12
cartons = n // EGGS_PER_CARTON
leftover = n % EGGS_PER_CARTON

Example: even or odd
Given some integer 𝑛 is 𝑛 even or odd?

if n % 2 == 0:
print(f'{n} is even')

else:
print(f'{n} is odd')

(Yes, there’s an even simpler way to write this. We’ll get to that in due
course.)

Comprehension check
1. Given some modulus, 𝑛, an integer, and some dividend, 𝑑, also an

integer, what are the possible values of d % n if

a. 𝑛 = 5
b. 𝑛 = −4
c. 𝑛 = 2
d. 𝑛 = 0

2. Explain why, if the modulus is positive, the remainder can never
be greater than the modulus.

3. The planet Zorlax orbits its sun every 291 1/3 Zorlaxian days. Thus,
starting from the year 1, every third year is a leap year on Zorlax.
So the year 3 is a leap year. The year 6 is a leap year. The year 273
is a leap year. Write a Python expression which, given some integer
𝑦 greater than or equal to 1 representing the year, will determine
whether 𝑦 represents a Zorlaxian leap year.

4. There’s a funny little poem: Solomon Grundy— / Born on a Mon-
day, / Christened on Tuesday, / Married on Wednesday, / Took
ill on Thursday, / Grew worse on Friday, / Died on Saturday, /
Buried on Sunday. / That was the end / Of Solomon Grundy.9
How could this be? Was Solomon Grundy married as an infant?
Did he die before he was a week old? What does this have to do
with modular arithmetic? What if I told you that Solomon Grundy
was married at age 28, and died at age 81? Explain.

9First recorded by James Orchard Halliwell and published in 1842. Minor changes
to punctuation by the author.

66 Variables, statements, and expressions

4.6 Exponentiation
Exponentiation is a ubiquitous mathematical operation. However, the
syntax for exponentiation varies between programming languages. In
some languages, the caret (^) is the exponentiation operator. In other lan-
guages, including Python, it’s the double-asterisk (**). Some languages
don’t have an exponentiation operator, and instead they provide a library
function, pow().

The reasons for these differences are largely historical. In mathemat-
ics, we write an exponent as a superscript, for example, 𝑥2. However,
keyboards and character sets don’t know about superscripts,10 and so
the designers of programming languages had to come up with different
ways of writing exponentiation.

** was first used in Fortran, which first appeared in 1957. This is the
operator which Python uses for exponentiation.

For the curious, here’s a table with some programming languages and
the operators or functions they use for exponentiation.

** Algol, Basic, Fortran, JavaScript, OCaml, Pascal, Perl,
Python, Ruby, Smalltalk

^ J, Julia, Lua, Mathematica

pow() C, C++, C#, Dart, Go, Java, Kotlin, Rust, Scala

expt Lisp, Clojure

Exponentiation in Python
Now we know that ** is the exponentiation operator in Python. This
is an infix operator, meaning that the operator appears between its two
operands. As you’d expect, the first operand is the base, and the second
operand is the exponent or power. So,

b ** n

implements 𝑏𝑛.
Here are some examples,

Area of a circle of a given radius 3.14159 * radius ** 2
Kinetic energy, given mass and velocity (1 / 2) * m * v ** 2

Also, as you’d expect, ** has precedence over * so in the above exam-
ples, radius ** 2 and v ** 2 are calculated before multiplication with
other terms.

10Picking nits, that’s not entirely true, since nowadays there are some character
sets that include superscript 2 and 3. But they’re not understood as numbers and
aren’t useful in programming.

Exponentiation 67

But wait! There’s more!
You’re going to find out sooner or later, so you might as well know now
that Python also has a built-in function pow(). For our purposes, **
and pow() are equivalent, so you may use either. Here’s a session at the
Python shell:

>>> 3 ** 2
9
>>> 3.0 ** 2
9.0
>>>
>>> pow(3, 2)
9
>>> pow(3.0, 2)
9.0

With two operands or arguments, ** and pow() behave identically. If
both operands are integers, and the exponent is positive, the result will
be an integer. If one or more of the operands is a float, the result will be
a float.

Negative or fractional exponents behave as you’d expect.

>>> 3 ** 0.5 # Calculates the square root of 3
1.7320508075688772
>>> 3 ** -1 # Calculates 1 / 3
0.3333333333333333

No surprises here.

𝑥0 = 1
Remember from algebra that any non-zero number raised to the zero
power is one. If that weren’t the case, what would become of this rule?

𝑏𝑚+𝑛 = 𝑏𝑚 × 𝑏𝑛

So 𝑥0 = 1 for all non-zero 𝑥. Python knows about that, too.

>>> 1 ** 0
1
>>> 2 ** 0
1
>>> 0.1 ** 0
1.0

What about 00? Many mathematics texts state that this should be un-
defined or indeterminate. Others say 00 = 1. What do you think Python
does?

68 Variables, statements, and expressions

>>> 0 ** 0
1

So, Python has an opinion on this.
Now, go forth and exponentiate!

A little puzzle
Consider the following Python shell session:

>>> pow(-1, 0)
1
>>> -1 ** 0
-1

What’s going on here? The answer we get using pow() is what we’d expect.
Shouldn’t these both produce the same result? Can you guess why these
yield different answers?

4.7 Exceptions
Exceptions are errors that occur at run time, that is, when you run your
code. When such an error occurs Python raises an exception, prints a
message with information about the exception, and then halts execution.
Exceptions have different types, and this tells us about the kind of error
that’s occurred.

If there is a syntax error, an exception of type SyntaxError is raised.
If there is an indentation error (a more specific kind of syntax error), an
IndentationError is raised. These errors occur before your code is ever
run—they are discovered as Python is first reading your file.

Most other exceptions occur as your program is run. In these cases,
the message will include what’s called a traceback, which provides a little
information about where in your code the error occurred. The last line
in an exception message reports the type of exception that has occurred.
It’s often helpful to read such messages from the bottom up.

What follows are brief summaries of the first types of exceptions you’re
likely to encounter, and in each new chapter, we’ll introduce new excep-
tion types as appropriate.

SyntaxError

If you write code which does not follow the rules of Python syntax,
Python will raise an exception of type SyntaxError. Example:

>>> 1 + / 1
File "<stdin>", line 1

1 + / 1
^

SyntaxError: invalid syntax

Exceptions 69

Notice that the ^ character is used to indicate the point at which the
error occurred.

Here’s another:

>>> True False
File "<stdin>", line 1

True False
^

SyntaxError: invalid syntax

When you encounter a syntax error, it means that some portion of
your code does not follow the rules of syntax. Code which includes a
syntax error cannot be executed by the Python interpreter, and syntax
errors must be corrected before your code will run.

NameError

A NameError occurs when we try to use a name which is undefined. There
must be a value assigned to a name before we can use the name.

Here’s an example of a NameError:

>>> print(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

Notice that Python reports the NameError and informs you of the name
you tried to use but which is undefined (in this case x).

These kinds of errors most often occur when we’ve made a typo in a
name.

Depending on the root cause of the error, there are two ways to correct
these errors.

• If the cause is a typo, just correct your typo.
• If it’s not just a typo, then you must define the name by making

an assignment with the appropriate name.

>>> pet = 'rabbit'
>>> print(pot)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'pot' is not defined
>>> print(pet)
rabbit

>>> age = age + 1 # Happy birthday!
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'age' is not defined

70 Variables, statements, and expressions

>>> age = 100
>>> age = age + 1 # Happy birthday!
>>> print(age)
101

TypeError

A TypeError occurs when we try to perform an operation on an object
which does not support that operation.

The Python documentation states: “[TypeError is] raised when an op-
eration or function is applied to an object of inappropriate type. The
associated value is a string giving details about the type mismatch.”11

For example, we can perform addition with operands of type int using
the + operator, and we can concatenate strings using the same operator,
but we cannot add an int to a str.

>>> 2 + 2
4
>>> 'fast' + 'fast' + 'fast'
'fastfastfast'
>>> 2 + 'armadillo'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

When you encounter a TypeError, you must examine the operator and
operands and determine the best fix. This will vary on a case-by-case
basis.

Here are some other examples of TypeError:

>>> 'hopscotch' / 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: 'str' and 'int'

>>> 'barbequeue' + 1
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

ZeroDivisionError

Just as we cannot divide by zero in mathematics, we cannot divide by
zero in Python either. Since the remainder operation (%) and integer
(a.k.a. floor) division (//) depend on division, the same restriction applies
to these as well.

11https://docs.python.org/3/library/exceptions.html#TypeError

https://docs.python.org/3/library/exceptions.html#TypeError

Exercises 71

>>> 1000 / 0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

4.8 Exercises
Exercise 01
Without typing these at a Python prompt first, determine the value of
each of the following expressions. Once you’ve worked out what you think
the evaluation should be, check your answer using the Python shell.

a. 13 + 6 - 1 * 7

b. (17 - 2) / 5

c. -5 / -1

d. 42 / 2 / 3

e. 3.0 + 1

f. 1.0 / 3

g. 2 ** 2

h. 2 ** 3

i. 3 * 2 ** 8 + 1

Exercise 02
For each of the expressions in exercise 01, give the type of the result of
evaluation. Example: 1 + 1 evaluates to 2 which is of type int.

Exercise 03
What is the evaluation of the following expressions?

a. 10 % 2

b. 19 % 2

c. 24 % 5

d. -8 % 3

72 Variables, statements, and expressions

Exercise 04
What do you think would happen if we were to use the operands we’ve
just seen with non-numeric types? For example, what do you think would
happen if we were to enter the following. Then check your expectations
using the Python interpreter. Any surprises?

a. 'Hello' + ', ' + 'World!'

b. 'Hello' * 3

c. True * True

d. True * False

e. False * 42

f. -True

g. True + True

Exercise 05
What is the difference between the following statements?

it_is_cloudy_today = True
it_will_rain_tomorrow = 'True'

Exercise 06
Some operands don’t work with certain types. For example, the following
will result in errors. Try these out at a prompt, and observe what happens.
Make a note of the type of error which occurs.

a. 'Hello' / 3

b. -'Hello'

c. 'Hello' - 'H'

Exercise 07
a. Write a statement that assigns the value 79.95 to a variable name

subtotal.

b. Write a statement that assigns the value 0.06 to a variable name
tax_rate.

c. Write a statement that multiplies subtotal by tax_rate and assigns
the result to a variable name sales_tax.

d. Write a statement that adds subtotal and sales_tax and assigns
the result to a variable name total.

Exercises 73

Exercise 08
What do you think would happen if we were to evaluate the expression
1 / 0? Why? Does this result in an error? What type of error results?

Exercise 09
a. Now that we’ve learned a little about modular arithmetic, recon-

sider the numerals we use in our decimal (base 10) system. In that
system, why do we have only the numerals 0, 1, 2, 3, 4, 5, 6, 7, 8,
and 9?

b. What numerals would we need in a base 7 system? How about base
5?

Chapter 5

Functions

This chapter introduces functions. Functions are a fundamental building
block for code in all programming languages (though they may go by
different names, depending on context).

Learning objectives
• You will learn how to write simple functions in Python, using def.
• You will learn how to use functions in your code.
• You will learn that indentation is syntactically meaningful in

Python (unlike many other languages).
• You will learn how to use functions (and constants) in Python’s

math module, such as square root and sine.
• You will expand on and solidify your understanding of topics pre-

sented in earlier chapters.

Terms and keywords introduced
• argument
• call or invoke
• def keyword
• dot notation
• formal parameter
• function
• import
• keyword
• local variable
• module
• pure and impure functions
• return keyword
• return value
• scope
• shadowing
• side effect

75

76 Functions

5.1 Introduction to functions
Among the most powerful tools we have as programmers—perhaps the
most powerful tools—are functions.

We’ve already seen some built-in Python functions, for example,
print() and type(). We’ll see many others soon.

Essentially, a function is a sub-program which we can “call” or “in-
voke” from within our larger program. For example, consider this code
which prints a string to the console.

print('Do you want a cookie?')

Here we’re making use of built-in Python function print(). The de-
velopers of Python have written this function for you, so you can use it
within your program. When we use a function, we say we are “calling”
or “invoking” the function.

In the example above, we call the print() function, supplying the
string 'Do you want a cookie?' as an argument.

As a programmer using this function, you don’t need to worry about
what goes on “under the hood” (which is quite a bit, actually). How
convenient!

When we call a function, the flow of control within our program passes
to the function, the function does its work, and then returns a value. All
Python functions return a value, though in some cases, the value returned
is None.1

Defining a function
Python allows us to define our own functions.2 A function is a unit
of code which performs some calculation or some task. A function may
take zero or more arguments (inputs to the function). The definition
of a function may include zero or more formal parameters which are,
essentially, variables that will take on the values of the arguments pro-
vided. When called, the body of the function is executed. In most, but
not all cases, a value is explicitly returned. Returned values might be the
result of a calculation or some status indicator—this will vary depending
on the purpose of the function. If a value is not explicitly returned, the
value None is returned implicitly.

Let’s take the simple example of a function which squares a number.
In your mathematics class you might write

𝑓(𝑥) = 𝑥2

1Unlike C or Java, there is no such thing as a void function in Python. All
Python functions return a value, even if that value is None.

2Different languages have different names for sub-programs we can call within
a larger program, for example, functions, methods, procedures, subroutines, etc.,
and some of these designations vary with context. Also, these are defined and im-
plemented somewhat differently in different languages. However, the fundamental
idea is similar for all: these are portions of code we can call or invoke within our
programs.

Introduction to functions 77

and you would understand that when we apply the function 𝑓 to some
argument 𝑥 the result is 𝑥2. For example, 𝑓(3) = 9. Let’s write a function
in Python which squares the argument supplied:

def square(x):
return x * x

def is a Python keyword, short for “define”, which tells Python we’re
defining a function. (Keywords are reserved words that are part of
the syntax of the language. def is one such keyword, and we will see
others soon.) Functions defined with def must have names (a.k.a., “iden-
tifiers”),3 so we give our function the name “square”.

Now, in order to calculate the square of something we need to know
what that something is. That’s where the x comes in. We refer to this as
a formal parameter of the function. When we use this function elsewhere
in our code we must supply a value for x. Values passed to a function are
called arguments (however, in casual usage it’s not uncommon to hear
people use “parameter” and “argument” interchangeably).

At the end of the first line of our definition we add a colon. What
follows after the colon is referred to as the body of the function. It is
within the body of the function that the actual work is done. The body
of a function must be indented as shown below—this is required by the
syntax of the language. It is important to note that the body of the
function is only executed when the function is called, not when it is
defined.

In this example, we calculate the square, x * x, and we return the
result. return is a Python keyword, which does exactly that: it returns
some value from a function.

Let’s try this in the Python shell to see how it works:

>>> def square(x):
... return x * x
...
>>>

Here we’ve defined the function square(). Notice that if we enter this
in the shell, after we hit return after the colon, Python replies with ...
and indents for us. This is to indicate that Python expects the body
of the function to follow. Remember: The body of a function must be
indented. Indentation in Python is syntactically significant (which might
seem strange if you’ve coded in Java, C, C++, Rust, JavaScript, C#,
etc.; Python uses indentation rather than braces).

So we write the body—in this case, it’s just a single line. Again,
Python replies with ..., essentially asking “Is there more?”. Here we
hit the return/enter key, and Python understands we’re done, and we
wind up back at the >>> prompt.

Now let’s use our function by calling it. To call a function, we give
the name, and we supply the required argument(s).

3Python does allow for anonymous functions, called “lambdas”, but that’s for
another day. For the time being, we’ll be defining and calling functions as demon-
strated here.

78 Functions

>>> square(5) # call `square` with argument 5
25
>>> square(7) # call `square` with argument 7
49
>>> square(10) # call `square` with argument 10
100

Notice that once we define our function we can reuse it over and over
again. This is one of the primary motivations for functions.

Notice also that in this case, there is no x outside the body of the
function.

>>> x
Traceback (most recent call last):

File "/blah/blah/code.py", line 90, in runcode
exec(code, self.locals)

File "<input>", line 1, in <module>
NameError: name 'x' is not defined

In this case, x exists only within the body of the function.4 The ar-
gument we supply within the parentheses becomes available within the
body of the function as x. The function then calculates x * x and returns
the value which is the result of this calculation.

If we wish to use the value returned by our function we can save it by
assigning the value to some variable, or use it in an expression, or even
include it as an argument to another function!

Can we create new variables in our functions?
Yes. Of course.

def cube(x):
y = x ** 3 # assign result local variable `y`
return y # return the value of `y`

We refer to such variable names (y in this example) as local variables,
and like the formal parameters of a function, they exist only within the
body of the function.

4This is what is called “scope”, and in the example given x exists only within
the scope of the function. It does not exist outside the function—for this we say “x
is out of scope.” We’ll learn more about scope later.

Introduction to functions 79

Storing a value returned by a function
Continuing with our example of square():

>>> a = 17
>>> b = square(a)
>>> b
289

Notice that we can supply a variable as an argument to our function.
Notice also that this object needn’t be called x.5

Using the value returned by a function in an expression
Sometimes there’s no need for assigning the value returned by a function
to a variable. Let’s use the value returned by the square() function to
calculate the circumference of a circle of radius 𝑟.

>>> PI = 3.1415926
>>> r = 126.1
>>> PI * square(r)
49955.123667046

Notice we didn’t assign the value returned to a variable first, but
rather, we used the result directly in an expression.

Passing the value returned from a function to another
function
Similarly, we can pass the value returned from a function to another
function.

>>> print(square(12))
144

What happens here? We pass the value 12 to the square() function,
this calculates the square and returns the result (144). This result be-
comes the value we pass to the print() function, and, unsurprisingly,
Python prints 144.

Do all Python functions return a value?
This is a reasonable question to ask, and the answer is “yes.”

But what about print()? Well, the point of print() is not to return
some value but rather to display something in the console. We call things
that a function does apart from returning a value side effects. The side
effect of calling print() is that it displays something in the console.

5In fact, even though it’s syntactically valid for a variable in the outer scope to
have the same name as a parameter to a function, or a local variable within a func-
tion, it’s best if they don’t have the same identifier. See the section on “shadowing”
for more.

80 Functions

>>> print('My hovercraft is full of eels!')
My hovercraft is full of eels!

But does print() return a value? How would you find out? Can you
think of a way you might check this?

What do you think would happen here?

>>> mystery = print('Hello')

Let’s see:

>>> mystery = print('Hello')
Hello
>>> print(mystery)
None

None is Python’s special way of saying “no value.” None is the default value
returned by functions which don’t otherwise return a value. All Python
functions return a value, though in some cases that value is None.6 So
print() returns the None.

How do we return None (assuming that’s something we want to do)?
By default, in the absence of any return statement, None will be returned
implicitly.

>>> def nothing():
... pass # `pass` means "don't do anything"
...
>>> type(nothing())
<class 'NoneType'>

Using the keyword return without any value will also return None.

>>> def nothing():
... return
...
>>> type(nothing())
<class 'NoneType'>

Or, if you wish, you can explicitly return None.

>>> def nothing():
... return None
...
>>> type(nothing())
<class 'NoneType'>

6If you’ve seen void in C++ or Java you have some prior experience with func-
tions that don’t return anything. All Python functions return a value, even if that
value is None.

A deeper dive into functions 81

What functions can do for us
• Functions allow us to break a program into smaller, more manage-

able pieces.
• They make the program easier to debug.
• They make it easier for programmers to work in teams.
• Functions can be efficiently tested.
• Functions can be written once, and used many times.

Comprehension check
1. Write a function which calculates the successor of any integer. That

is, given some argument n the function should return n + 1.

2. What’s the difference between a formal parameter and an argu-
ment?

3. When is the body of a function executed?

5.2 A deeper dive into functions
Recall that we define a function using the Python keyword def. So, for
example, if we wanted to implement the following mathematical function
in Python:

𝑓(𝑥) = 𝑥2 − 1
Our function would need to take a single argument and return the result
of the calculation.

def f(x):
return x ** 2 - 1

We refer to f as the name or identifier of the function. What follows the
identifier, within parentheses, are the formal parameters of the function.
A function may have zero or more parameters. The function above has
one parameter x.7

Let’s take a look at a complete Python program in which this function
is defined and then called twice: once with the argument 12 and once
with the argument 5.

7While Python does support optional parameters, we won’t present the syntax
for this here.

82 Functions

Here we define the function.
At this point, x does not have a value,
and this code is not executed.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

Remember: Writing a function definition does not execute the function.
A function is executed only when it is called.

Calling a function
Once we have written our function, we may call or invoke the function
by name, supplying the necessary arguments. To call the function f()
above, we must supply one argument.

y = f(12)

This calls the function f(), with the argument 12 and assigns the result
to a variable named y. Now what happens?

Here we call the function,
supplying 12 as an argument.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

When we call a function with an argument, the argument is passed to
the function. The formal parameter receives the argument—that is, the
argument is assigned to the formal parameter. So when we pass the ar-
gument 12 to the function f(), then the first thing that happens is that
the formal parameter x is assigned the argument. It’s almost as if we

A deeper dive into functions 83

performed the assignment x = 12 as the first line within the body of the
function.

When we call the function and pass
the argument 12, x takes on the value
12.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

Once the formal parameter has been assigned the value of the argument,
the function does its work, executing the body of the function.

Now, with x = 12, the function evaluates
the expression…

…12 ⨉ 12 - 1
…144 - 1
…143

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

Then, the function returns the result. Flow of control is returned to the
point at which the function was called.

84 Functions

The function returns the calculated
value (143)…

So f(12) has evaluated to 143, and
the result is assigned to y.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

For this example, we print the result, 143.

Prints 143 at the console.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

Let’s call the function again, this time with a different argument, 5.

Here we call the function again,
supplying 5 as an argument.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

A deeper dive into functions 85

When we call the function and pass
the argument 5, x takes on the value
5.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

Now, with x = 5, the function evaluates
the expression…

…5 ⨉ 5 - 1
…25 - 1
…24

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

The function returns the calculated
value (24)…

So f(5) has evaluated to 24, and
the result is assigned to y.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

86 Functions

Prints 24 at the console.

"""
Demonstration of a function
"""

def f(x):
 return x ** 2 - 1

if __name__ == '__main__':

 y = f(12)
 print(y)

 y = f(5)
 print(y)

What to pass to a function?
A function call must match the signature of the function. The signature
of a function is its identifier and formal parameters. When we call a
function, the number of arguments must agree with the number of formal
parameters.8

A function should receive as arguments all of the information it needs
to do its work. A function should not depend on variables that exist only
in the outer scope. (In most cases, it’s OK for a function to depend on
a constant defined in the outer scope.)

Here’s an example of how things can go wrong if we write a function
which depends on some variable that exists in the outer scope.

y = 2

def square(x):
return x ** y

print(square(3)) # prints "9"

y = 3

print(square(3)) # oops! prints "27"

This is a great way to introduce bugs and cause headaches. Better
that the function should use a value passed in as an argument, or a
value assigned within the body of the function (a local variable), or a
literal. For example, this is OK:

def square(x):
y = 2
return x ** y

8Again, we’re excluding from consideration functions with optional arguments
or keyword arguments.

Passing arguments to a function 87

and this is even better:

def square(x):
return x ** 2

Now, whenever we supply some particular argument, we’ll always get
the same, correct return value.

Functions should be “black boxes”
In most cases functions should operate like black boxes which take some
input (or inputs) and return some output.

We should write functions in such a way that, once written, we don’t
need to keep track of what’s going on within the function in order to use
it correctly. A cardinal rule of programming: functions should hide im-
plementation details from the outside world. In fact, information hiding
is considered a fundamental principle of software design.9

For example, let’s say I gave you a function which calculates the
square root of any real number greater than zero. Should you be required
to understand the internal workings of this function in order to use it
correctly? Of course not! Imagine if you had to initialize variables used
internally by this function in order for it to work correctly! That would
make our job as programmers much more complicated and error-prone.

Instead, we write functions that take care of their implementation
details internally, without having to rely on code or the existence of
variables outside the function body.

5.3 Passing arguments to a function
What happens when we pass arguments to a function in Python? When
we call a function and supply an argument, the argument is assigned to
the corresponding formal parameter. For example:

def f(z):
z = z + 1
return z

9If you’re curious, check out David Parnas’ seminal 1972 article: “On the Criteria
To Be Used in Decomposing Systems into Modules”, Communications of the ACM,
15(12) (https://dl.acm.org/doi/pdf/10.1145/361598.361623).

https://dl.acm.org/doi/pdf/10.1145/361598.361623

88 Functions

x = 5
y = f(x)

print(x) # prints 5
print(y) # prints 6

When we called this function supplying x as an argument we assigned
the value x to z. It is just as if we wrote z = x. This assignment takes
place automatically when we call a function and supply an argument.

If we had two (or more) formal parameters it would be no different.

def add(a, b):
return a + b

x = 1
y = 2

print(add(x, y)) # prints 3

In this example, we have two formal parameters, a and b, so when we
call the add function we must supply two arguments. Here we supply x
and y as arguments, so when the function is called Python automatically
makes the assignments a = x and b = y.

It would work similarly if we were to supply literals instead of vari-
ables.

print(add(12, 5)) # prints 17

In this example, the assignments that are performed are a = 12 and
b = 5.

You may have heard the terms “pass by value” or “pass by reference.”
These don’t really apply to Python. Python always passes arguments by
assignment. Always.

5.4 Scope
Names of formal parameters and any local variables created within a
function have a limited lifetime—they exist only until the function is
done with its work. We refer to this as scope.

The most important thing to understand here is that names of formal
parameters and names of local variables we define within a function have
local scope. They have a lifetime limited to the execution of the function,
and then those names are gone.

Scope 89

Here’s a trivial example.

>>> def foo():
... x = 1
... return x
...

>>> y = foo()
>>> y
1

The name x within the function foo only exists as long as foo is being
executed. Once foo returns the value of x, x is no more.

>>> def foo():
... x = 1
... return x
...

>>> y = foo()
>>> y
1
>>> x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

So the name x lives only within the execution of foo. In this example,
the scope of x is limited to the function foo.

Shadowing
It is, perhaps, unfortunate that Python allows us to use variable names
within a function that exist outside the function. This is called shadowing,
and it sometimes leads to confusion.

Here’s an example:

>>> def square(x):
... x = x * x
... return x
...
>>> x = 5
>>> y = square(x)
>>> y
25
>>> x
5

What has happened? Didn’t we set x = x * x? Shouldn’t x also be 25?
No. Here we have two different variables with the same name, x. We

have the x in the outer scope, created with the assignment x = 5. The x

90 Functions

within the function square is local, within that function. Yes, it has the
same name as the x in the outer scope, but it’s a different x.

Generally, it’s not a good idea to shadow variable names in a function.
Python allows it, but this is more a matter of style and avoiding confu-
sion. Oftentimes, we rename the variables in our functions, appending
an underscore.

>>> def square(x_):
... x_ = x_ * x_
... return x_
...
>>> x = 5
>>> y = square(x)
>>> y
25

This is one way to avoid shadowing.
Another approach is to give longer, more descriptive names to vari-

ables in the outer scope, and leave the shorter or single-character names
to the function. Which approach is best depends on context.

5.5 Pure and impure functions
So far, all the functions we’ve written are pure. That is, they accept some
argument or arguments, and return a result, behaving like a black box
with no interaction with anything outside the box. Example:

def successor(n):
return n + 1

In this case, there’s an argument, a simple calculation, and the result
is returned. This is pure, in that there’s nothing changed outside the
function and there’s no observable behavior of the function other than
returning the result. This is just like the mathematical function

𝑠(𝑛) = 𝑛 + 1.

Impure functions
Sometimes it’s useful to implement an impure function. An impure func-
tion is one that has side effects. For example, we might want to write a
function that prompts the user for an input and then returns the result.

def get_price():
while True:

price = float(input("Enter the asking price "
"for the item you wish "
"to sell: $"))

if price > 1.00:
break

The math module 91

else:
print("Price must be greater than $1.00!")

return price

This is an impure function since it has side effects, the side effects
being the prompts and responses displayed to the user. That is, we can
observe behavior in this function other than its return value. It does
return a value, but it exposes other behaviors as well.

Keep side effects to a minimum
Always, always consider what side effects your functions have, and
whether such side effects are correct and desirable.

As a rule, it’s best to keep side effects to a minimum (eliminating
them entirely if possible). But sometimes it is appropriate to rely on side
effects. Just make sure that if you are relying on side effects, that it is
correct and by design, and not due to a defect in programming. That is,
if you write a function with side effects, it should be because you choose
to do so and you understand how side effects may or may not change the
state of your program. It should always be a conscious choice and never
inadvertent, otherwise you may introduce bugs into your program. For
example, if you inadvertently mutate a mutable object, you may change
the state of your program in ways you have not anticipated, and your
program may exhibit unexpected and undesirable behaviors.

We will take this topic up again, when we get to mutable data types
like list and dict in Chapters 10 and 16.

Comprehension check
1. Write an impure function which produces a side effect, but returns

None.

2. Write a pure function which performs a simple calculation and
returns the result.

5.6 The math module
We’ve seen that Python provides us with quite a few conveniences “right
out of the box.” Among these are built-in functions, that we as program-
mers can use—and reuse—in our code with little effort. For example,
print(), and there are many others.

We’ve also learned about how to define constants in Python. For ex-
ample, Newton’s gravitational constant:

G = 6.67 * 10 ** -11 # N m^2 / kg^2

Here we’ll learn a little about Python’s math module. The Python math
module is a collection of constants and functions that you can use in your
own programs—and these are very, very convenient. For example, why

92 Functions

write your own function to find the principal square root of a number
when Python can do it for you?10

Unlike built-in functions, in order to use functions (and constants)
provided by the Python math module, we must first import the module
(or portions thereof).11 You can think of this as importing features you
need into your program.

Python’s mathmodule is rich with features. It provides many functions
including

function calculation
sqrt(x)

√𝑥
exp(x) 𝑒𝑥

log(x) ln𝑥
log2(x) log2 𝑥
sin(x) sin𝑥
cos(x) cos𝑥

and many others.

Using the math module
To import a module, we use the import keyword. Imports should appear
in your code immediately after the starting docstring, and you only need
to import a module once. If the import is successful, then the imported
module becomes available.

>>> import math

Now what? Say we’d like to use the sqrt() function provided by the
math module. How do we access it?

If we want to access functions (or constants) within the math module
we use the . operator.

>>> import math
>>> math.sqrt(25)
5.0

Let’s unpack this. Within the math module, there’s a function named
sqrt(). Writing math.sqrt() is accessing the sqrt() function within the
math module. This uses what is called dot notation in Python (and many
other languages use this as well).

Let’s try another function in the math module, sin(), which calculates
the sine of an angle. You may remember from pre-calculus or trigonome-
try course that sin 0 = 0, sin 𝜋

2 = 1, sin𝜋 = 0, sin 3𝜋
2 = −1, and sin 2𝜋 = 0.

Let’s try this out.

10The only reasonable answer to this question is “for pedagogical purposes”, and
in fact, later on, we’ll do just that—write our own function to find the principal
square root of a number. But let’s set that aside for now.

11We’re going to ignore the possibility of importing portions of a module for now.

Exceptions 93

>>> import math
>>> PI = 3.14159
>>> math.sin(0)
0.0

So far, so good.

>>> math.sin(PI / 2)
0.999999998926914

That’s close, but not quite right. What went wrong? (Hint: Repre-
sentation error is not the problem.) Our approximation of 𝜋 (defined as
PI = 3.14159, above) isn’t of sufficient precision. Fortunately, the math
module includes high-precision constants for 𝜋 and 𝑒.

>>> math.sin(math.pi / 2)
1.0

Much better.
It is left to the reader to test other arguments to the sin() function.

math module documentation
As noted, the math module has many ready-made functions you can use.
For more information, see the math module documentation.

• https://docs.python.org/3/library/math.html.

5.7 Exceptions

IndentationError

In Python, unlike many other languages, indentation is syntactically sig-
nificant. We’ve seen when defining a function that the body of the func-
tion must be indented (we’ll see other uses of indentation soon).

An exception of type IndentationError is raised if Python dis-
agrees with your use of indentation—typically if indentation is expected
and your code isn’t, or if a portion of your code is over-indented.
IndentationError is a more specific type of SyntaxError.

When you encounter an indentation error, you should inspect your
code and correct the indentation.

Here’s an example:

>>> def square(n):
... return n * n
File "<stdin>", line 2

return n * n
^

IndentationError: expected an indented block after function
definition on line 1

https://docs.python.org/3/library/math.html

94 Functions

>>> def square(n):
... return n * n # now it's correctly indented!
...
>>> square(4)
16

ValueError

A ValueError is raised when the type of an argument or operand is valid,
but the value is somehow unsuitable. We’ve seen how to import the math
module and how to use math.sqrt() to calculate the square root of some
number. However, math.sqrt() does not accept negative operands (it
doesn’t know about complex numbers), and so, if you supply a negative
operand to math.sqrt() a ValueError is raised.

Example:

>>> import math
>>> math.sqrt(4) # this is A-OK
2.0
>>> math.sqrt(-1)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: math domain error

In a case like this, you need to ensure that the argument or operand
which is causing the problem has a suitable value.

ModuleNotFoundError

We encounter ModuleNotFoundError if we try to import a module that
doesn’t exist, that Python can’t find, or if we misspell the name of a
module.

Example:

>>> import maath
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ModuleNotFoundError: No module named 'maath'

Exercises 95

5.8 Exercises
Exercise 01
Identify the formal parameter(s) in each of the following functions.

a.

def add_one(n):
n = n + 1
return n

b.

def power(x, y):
return x ** y

Exercise 02
There’s something wrong with each of these function definitions. Identify
the problem and suggest a fix.

a. Function to cube any real number.

def cube:
return x ** 3

b. Function to print someone’s name.

def say_hello():
print(name)

c. Function to calculate 𝑥2 + 3𝑥 − 1 for any real valued 𝑥.

def poly(x):
return x ** 2 + 3 * x - 1

d. Function which takes some number, 𝑥, subtracts 1, and returns the
result.

def subtract_one(x):
y = x - 1

Exercise 03
Write a function which takes any arbitrary string as an argument and
prints the string to the console.

96 Functions

Exercise 04
Write a function which takes two numeric arguments (float or int) and
returns their product.

Exercise 05
a. Write a function which take an integer as an argument and returns 0

if the integer is even and 1 if the integer is odd. Hint: The remainder
(modulo) operator, %, calculates the remainder when performing
integer division. For example, 17 % 5 yields 2, because 5 goes into
17 three times, leaving a remainder of two.

b. What did you name your function and why?

Exercise 06
Write a function which takes two numeric arguments, one named
subtotal and the other named tax_rate, and calculates and returns the
total including tax. For example, if the arguments supplied were 114.0
for subtotal and 0.05 for tax_rate, your function should return the value
119.7. If the arguments were 328.0 and 0.045, your function should re-
turn the value 342.76.

This function should produce no side effects.

Chapter 6

Style

Programs must be written for people to read, and only
incidentally for machines to execute.

–Abelson, Sussman, and Sussman

Learn the rules so you know how to break them.
–The 14th Dalai Lama

This chapter will introduce the concept of good Python style through
the use of the PEP 8 style guide. We’ll further our understanding of
constants, learn about the benefits of using comments, and how/when
to use them effectively.

Learning objectives
• You will learn about the importance of good Python style and the

PEP 8 style guide.
• You will learn conventions for naming constants.
• You will learn about comments and docstrings in Python and their

uses.

Terms introduced
• camelCase
• docstring
• inline comment
• PEP 8
• single-line comment
• snake_case

6.1 The importance of style
As we learn to write programs, we will also learn how to use good style.
Good coding style is more important than many beginners realize. Using

97

98 Style

good style:

• helps you read your code more quickly and accurately.
• makes it easier to identify syntax errors and common bugs.
• helps clarify your reasoning about your code.

Most workplaces and open-source projects require conformance to a
coding standard. For example, Google’s style guide for Python.1

When we’re solving problems we don’t want reading code or making
decisions about formatting our code to consume more than their share
of valuable cognitive load. So start off on the right foot and use good
style from the beginning. That way, you can free your brain to solve
problems—that’s the fun part.

Every language has its conventions, and you should stick to them.
This is part of writing readable, idiomatic code.

6.2 PEP 8
Fortunately, there is a long-standing, comprehensive style guide for
Python called PEP 8.2 The entire style guide PEP 8 – Style Guide
for Python Code is available online3. Noted Python developer Kenneth
Reitz has made a somewhat prettified version at https://pep8.org/. You
should consult these resources for a complete guide to good style for
Python. Many projects in industry and in the open source world enforce
the use of this standard.

Don’t think in terms of saving keystrokes—follow the style guide, and
you’ll find this helps you (and others!) read and understand what you
write.

6.3 Whitespace
Yes! Whitespace is important! Using whitespace correctly can make your
code much more readable.

Use whitespace between operators and after commas.4 Example:

Don't do this

x=3.4*y+9-17/2

joules=(kg*m**2)/(sec**2)

amount=priceperitem*items

Instead, do this:

1https://google.github.io/styleguide/pyguide.html
2PEP is short for Python Enhancement Proposal
3https://peps.python.org/pep-0008/
4One exception to this rule is keyword arguments in function calls, for example,

the end keyword argument for the built-in print() function.

https://pep8.org/
https://google.github.io/styleguide/pyguide.html
https://peps.python.org/pep-0008/

Whitespace 99

Better

x = 3.4 * y + 9 - 17 / 2

joules = (kg * m ** 2) / (sec ** 2)

amount = price_per_item * items

Without the whitespace between operators, your eye and brain have to
do much more work to divide these up for reading.

Sometimes, however, extra whitespace is unnecessary or may even hin-
der readability. You should avoid unnecessary whitespace before closing
and after opening braces, brackets or parentheses.

Don't do this

picas = inches_to_picas (inches)

Better

picas = inches_to_picas(inches)

Do not put whitespace after names of functions.

Don't do this

def inches_to_points (in):
return in * POINTS_PER_INCH

Better

def inches_to_points(in):
return in * POINTS_PER_INCH

In doing this, we create a tight visual association between the name of
a function and its parameters.

Do not put whitespace before commas or colons.

Don't do this

lst = [3 , 2 , 1]

Better
lst = [3, 2, 1]

It’s OK to slip a blank line within a block of code to logically separate
elements but don’t use more than one blank line. Exceptions to this are
function declarations which should be preceded by two blank lines, and
function bodies which should be followed by two blank lines.

100 Style

6.4 Names (identifiers)
Choosing good names is crucial in producing readable code. Use meaning-
ful names when defining variables, constants, and functions. This makes
your code easier to read and easier to debug!

Examples of good variable names:

• velocity
• average_score
• watts

Examples of bad variable names:

• q
• m7
• rsolln

Compare these with the good names (above). With a good name, you
know what the variable represents. With these bad names, who knows
what they mean? (Seriously, what the heck is rsolln?)

There are some particularly bad names that should be avoided no
matter what. Never use the letter ”O” (upper or lower case) or ”l” (low-
ercase ”L”) or ”I” (upper case ”i”) as a variable name. “O” and “o” look
too much like “0”. “l” and “I” look too much like “1”.

While single letter variable names are, in general, to be avoided, it’s
OK sometimes (depending on context). For example, it’s common prac-
tice to use i, j, etc. for loop indices (we’ll get to loops later) and x, y, z
for spatial coordinates, but only use such short names when it is 100%
clear from context what these represent.

Similar rules apply to functions. Examples of bad function names:

• i2m()
• sd()

Examples of good function names:

• inches_to_meters()
• standard_deviation()

ALL_CAPS, lowercase, snake_case, camelCase,
WordCaps
In Python, the convention for naming variables and function is that they
should use lowercase or so-called snake case, in which words are separated
by underscores.

In some other languages, camelCase (with capital letters in the mid-
dle) or WordCaps (where each word is capitalized) are the norm. Not
so with Python. camelCase should be avoided (always). WordCaps are
appropriate for class names (a feature of object-oriented programming—
something that’s not presented in this text).

• Good: price_per_item
• Bad: Priceperitem or pricePerItem

As noted earlier, ALL_CAPS is reserved for constants.

Line length 101

6.5 Line length
PEP 8 suggests that lines should not exceed 79 characters in length.
There are several reasons why this is a good practice.

• It makes it feasible to print source code on paper or to view without
truncation on various source code hosting websites (for example,
GitHub, GitLab, etc.).

• It accommodates viewports (editor windows, etc.) of varying width
(don’t forget you may be collaborating with others).

• Even if you have a wide monitor, and can fit long lines in your view-
port, long lines slow your reading down. This is well documented.
If your eye has to scan too great a distance to find the beginning
of the next line, readability suffers.

Throughout this text, you may notice some techniques used to keep
line length in code samples within these bounds.

6.6 Constants
In most programming languages there’s a convention for naming con-
stants. Python is no different—and the convention is quite similar to
many other languages.

In Python, we use ALL_CAPS for constant names, with underscores
to separate words if necessary. Here are some examples:

Physical constants
C = 299792458 # speed of light: meters / second ** -1
MASS_ELECTRON = 9.1093837015 * 10 ** -31 # mass in kg

Mathematical constants
PI = 3.1415926535 # pi
PHI = 1.6180339887 # phi (golden ratio)

Unit conversions
FEET_PER_METER = 3.280839895
KM_PER_NAUTICAL_MILES = 1.852

Other constants
EGGS_PER_CARTON = 12

Unlike Java, there is no final keyword, which tells the compiler that a
constant must not be changed (same for other languages like C++ or
Rust which have a const keyword).

What prevents a user from changing a constant? In Python, nothing.
All the more reason to make it immediately clear—visually—that we’re
dealing with a constant.

So the rule in Python is to use ALL_CAPS for constants and noth-
ing else. Then it’s up to you, the programmer, to ensure these remain
unchanged.

102 Style

6.7 Comments in code
Virtually all programming languages allow programmers to add com-
ments to their code, and Python is no different. Comments are text
within your code which is ignored by the Python interpreter.

Comments have many uses:

• explanations as to why a portion of code was written the way it
was,

• reminders to the programmer, and
• guideposts for others who might read your code.

Comments are an essential part of your code. In fact, it’s helpful to
think of your comments as you do your code. By that, I mean that the
comments you supply should be of value to the reader—even if that reader
is you.

Some folks say that code should explain how, and comments should
explain why. This is not always the case, but it’s a very good rule in
general. But beware: good comments cannot make up for opaque or
poorly-written code.

Python also has what are called docstrings. While these are not ig-
nored by the Python interpreter, it’s OK for the purposes of this textbook
to think of them that way.

Docstrings are used for:

• providing identifying information,
• indicating the purpose and correct use of your code, and
• providing detailed information about the inputs to and output from

functions.

That said, here are some forms and guidelines for comments and doc-
strings.

Inline and single-line comments
The simplest comment is an inline or single-line comment. Python uses
the # (call it what you will—pound sign, hash sign, number sign, or
octothorpe) to start a comment. Everything following the # on the same
line will be ignored by the Python interpreter. Here are some examples:

This is a single-line comment

foo = 'bar' # This is an inline comment

Docstrings
Docstring is short for documentation string. These are somewhat different
from comments. According to PEP 257

A docstring is a string literal that occurs as the first statement
in a module, function, class, or method definition.

Comments in code 103

Docstrings are not ignored by the Python interpreter, but for the
purposes of this textbook you may think of them that way. Docstrings
are delimited with triple quotation marks. Docstrings may be single lines,
thus:

def square(n):
"""Return the square of n."""
return n * n

or they may span multiple lines:

"""
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210, section Z
Homework 5
"""

It’s a good idea to include a docstring in every program file to explain
who you are and what your code is intended to do.

"""
Distance converter
J. Jones

This is a simple program that
converts miles to kilometers.
We use the constant KM_PER_MILE
= 1.60934 for these calculations.
"""

Using comments as scaffolding
You may find it helpful to use comments as scaffolding for your code.
This involves using temporary comments that serve as placeholders or
outlines of your program. In computer science, a description of steps
written in plain language embedded in code is known as pseudocode.

For example, if one were asked to write a program that prompts the
user for two integers and then prints out the sum, one might sketch
this out with comments, and then replace the comments with code. For
example:

Get first integer from user
Get second integer from user
Calculate the sum
Display the result

and then, implementing the code one line at a time:

104 Style

a = int(input('Please enter an integer: '))
Get second integer from user
Calculate the sum
Display the result

a = int(input('Please enter an integer: '))
b = int(input('Please enter another integer: '))
Calculate the sum
Display the result

a = int(input('Please enter an integer: '))
b = int(input('Please enter another integer: '))
result = a + b
Display the result

a = int(input('Please enter an integer: '))
b = int(input('Please enter another integer: '))
result = a + b
print(f'The sum of the two numbers is {result}')

This approach allows you to design your program initially without fuss-
ing with syntax or implementation details, and then, once you have the
outline sketched out in comments, you can focus on the details one step
at a time.

TODOs and reminders
While you are writing code it’s often helpful to leave notes for yourself
(or others working on the same code). TODO is commonly used to indicate
a part of your code which has been left unfinished. Many IDEs recognize
TODO and can automatically generate a list of unfinished to-do items.

Avoid over-commenting
While it is good practice to include comments in your code, well-written
code often does not require much by way of comments. Accordingly, it’s
important not to over-comment your code. Here are some examples of
over-commenting:

song.set_tempo(120) # set tempo to 120 beats / minute NO!

x = x + 1 # add one to x NO!

I wrote this code before I had any coffee NO!

Exercises 105

Note

It is often the case that code from textbooks or presented in lec-
tures is over-commented. This is for pedagogical purposes and
should be understood as such.

6.8 Exercises
Exercise 01
Here are some awful identifiers. Replace them with better ones.

Newton's gravitational constant, G
MY_CONSTANT = 6.674E-11

Circumference of a circle
circle = rad ** 2 * math.pi

Clock arithmetic
Calculate 17 hours after 7 o'clock
thisIsHowWeDoItInJava = (7 + 17) % 12

Exercise 02
The following Python code runs perfectly fine but deviates from the PEP
8 style guide. Using your chosen IDE, fix the issues and check to make
sure that the program still runs correctly.

def CIRCUMFERENCEOFCIRCLE(radius):
c=2*pi*radius
return c

pi=3.14159
CIRC=CIRCUMFERENCEOFCIRCLE(22)
print("The circumference of a circle with a radius of 22cm"
"is "+str(CIRC)+ "cm.")

Chapter 7

Console I/O

So far, we’ve provided all the values for our functions in our code. Things
get a lot more interesting when the user can provide such values.

In this chapter, we’ll learn how to get input from the user and use it
in our calculations. We’ll also learn how to format the output displayed
to the user.

We call getting and displaying data this way as console I/O (“I/O”
is just short for input/output).

We’ll also learn how to use Python’s f-strings (short for formatted
string literals) to format output. For example, we can use f-strings with
format specifiers to display floating point numbers to a specific number
of digits to the right of the decimal place. With f-strings we can align
strings for displaying data in tabular format.

Warning

In this text, we will use f-strings exclusively for formatting out-
put. Beware! There’s a lot of stale information out there on the
internet showing how to format strings in Python. For example,
you may see the so-called printf-style (inherited from the C pro-
gramming language), or the str.format() method. These alternate
methods have their occasional uses, but for general purpose string
formatting, your default should be to use f-strings.

Learning objectives
• You will learn how to prompt the user for input, and handle input

from the user, converting it to an appropriate type if necessary.
• You will learn how to format strings using f-strings and interpola-

tion.
• You will learn how to use format specifiers within f-strings.
• You will write programs which receive user input, and produce

output based on that input, often performing calculations.

107

108 Console I/O

Terms and built-in functions introduced
• command line interface (CLI)
• console
• constructor (int(), float(), and str())
• f-string
• format specifier
• graphical user interface (GUI)
• I/O (input/output)
• input()
• string interpolation

7.1 Motivation
It’s often the case that as we are writing code, we don’t have all the in-
formation we need for our program to produce the desired result. For
example, imagine you were asked to write a calculator program. No
doubt, such a program would be expected to add, subtract, multiply,
and divide. But what should it add? What should it multiply? You, as
the programmer, would not know in advance. Thus, you’d need a way to
get information from the user into the program.

Of course, there are many ways to get input from a user. The most
common, perhaps, is via a graphical user interface or GUI. Most, or
likely all, of the software you use on your laptop, desktop, tablet, or
phone makes use of a GUI.

In this chapter, we’ll see how to get input in the most simple way,
without having to construct a GUI. Here we’ll introduce getting user
input from the console. Later, in Chapter 13, we’ll learn how to read
data from an external file.

7.2 Command line interface
We’ve seen how to use the Python shell, where we type expressions or
other Python code and it’s executed interactively.

What we’ll learn now is how to write what are called CLI programs.
That’s short for command line interface. This distinguishes them from
GUI or graphical user interface programs.

When we interact with a CLI program, we run it from the command
line (or within your IDE) and we enter data and view program output
in text format. We often refer to this interaction as taking place within
the console. The console is just a window where we receive text prompts,
and reply by typing at the keyboard.

This has a similar feel to the Python shell: prompt then reply, prompt
then reply.

7.3 The input() function
Python makes it relatively easy to get input from the console, using the
built-in function input(). The input() function takes a single, optional

The input() function 109

parameter—a string—which, if supplied, is used as a prompt displayed
to the user.

Here’s a quick example at the Python shell:

>>> input("What is your name? ")
What is your name? Sir Robin of Camelot
'Sir Robin of Camelot'
>>> input("What is your favorite color? ")
What is your favorite color? Blue
'Blue'
>>> input("What is the capital of Assyria? ")
What is the capital of Assyria? I don't know that!
"I don't know that!"

input() takes a string as an argument. This string is displayed as a
prompt to the user, like “How old are you?” or “How many cookies would
you like to bake?” or “How long are your skis (in cm)?” After displaying
a prompt, input() waits for the user to enter something at the keyboard.
When the user hits the return key, input() returns what the user typed
as a string.

Again, here’s an example in the Python shell—notice we’re going to
store the value returned by the input() function using a variable.

>>> users_name = input("What is your name? ")
What is your name? Sir Robin of Camelot
>>> users_name
'Sir Robin of Camelot'

Try this out on your own in the Python shell.
Here’s what just happened. On the first line (above) we called

the input() function and supplied the string argument “What is your
name? ”. Then, on the second line, input() does its work. It prints “What
is your name?” and then waits for the user to type their response. In this
case, the user has typed “Sir Robin of Camelot”. When the user hits the
enter/return key, the input() function returns what the user typed (be-
fore hitting enter/return) as a string. In this example, the string returned
by input() is assigned the name users_name. On the third line, we enter
the expression users_name and Python obliges by printing the associated
value: “Sir Robin of Camelot”.

Here’s a short program that prompts the user for their name and their
quest, and just echoes back what the user has typed:

110 Console I/O

"""Prompts the user for their name and quest
and prints the results. """

name = input('What is your name? ')
quest = input('What is your quest? ')

print(name)
print(quest)

Try it out. Copy this code, paste it into an editor window in your
text editor or IDE, and save the file as name_and_quest.py. Then run the
program. When run, the program first will prompt the user with ‘What
is your name? ’ and then it will assign the value returned by input() to
the variable name. Then it will prompt for the user’s quest and handle
the result similarly, assigning the result to the variable quest. Once the
program has gathered the information it needs, it prints the name and
quest that the user provided.

A session for this might look like this:

What is your name? Galahad
What is your quest? To seek the Holy Grail!
Galahad
To seek the Holy Grail!

Notice that in order to use the strings returned by input() we assigned
them to variables. Again, remember that the input() function returns a
string.

That’s pretty convenient, when what we want are strings, but some-
times we want numeric data, so we’ll also learn how to convert strings
to numeric data (where possible) with the functions int() and float().

7.4 Converting strings to numeric types

The problem
Here’s an example which illustrates a problem we encounter when trying
to get numeric input from the user—the input() function always returns
a string and we can’t do math with strings.

"""
Prompts the user for weight in kilograms
and converts to (US customary) pounds.
"""

POUNDS_PER_KILOGRAM = 2.204623

def kg_to_pounds(kg_):
return kg_ * POUNDS_PER_KILOGRAM

Converting strings to numeric types 111

kg = input("Enter the weight in kilograms (kg): ")
lbs = kg_to_pounds(kg)
print(lbs)

If we save this code to file and try running it, it will fail when trying
to convert kilograms to pounds. We’ll get the message:

TypeError: can't multiply sequence by non-int of type 'float'

What happened? When the program gets input from the user:

kg = input("Enter the weight in kilograms (kg): ")

the value returned from the input() function is a string. The value re-
turned from the input() function is always a string. Say the user enters
“82” at the prompt. Then what gets saved with the name kg is the string
'82' not the number 82 and we can’t multiply a string by a floating point
number—that makes no sense!

Happily, there’s an easy fix. Python provides built-in functions that
can be used to produce objects of numeric types from a string (if possi-
ble). These are the integer constructor, int(), and the float constructor,
float(). These functions can take a string which looks like it ought to be
convertible to a number, performs the conversion, and returns an object
of the corresponding numeric type.

Let’s try these out in the Python shell:

>>> int('82')
82
>>> float('82')
82.0

In the first instance, we pass the string '82' as an argument to the
int() constructor to get an int. In the second instance, we pass the string
'82' as an argument to the float() constructor to get a float.

What happens if have a string like '82.5'? This is a valid input to
the float() constructor, but does not work with the int() constructor.

>>> float('82.5') # this works OK
82.5
>>> int('82.5')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '82.5'

The error message is telling us that the string '82.5' cannot be con-
verted to an int.

Now, returning to the problem at hand—converting user input to a
floating point number—here’s how we fix the code we started with.

112 Console I/O

"""
Prompts the user for weight in kilograms
and converts to (US customary) pounds.
"""

POUNDS_PER_KILOGRAM = 2.204623

def kg_to_pounds(kg_):
return kg_ * POUNDS_PER_KILOGRAM

kg = float(input("Enter the weight in kilograms (kg): "))
lbs = kg_to_pounds(kg)
print(lbs)

Notice that we wrapped the call to input() within a call to the float
constructor. This expression is evaluated from the inside out (as you
might suspect). First the call to input() displays the prompt provided,
waits for input, then returns a string. The value returned (say, '82.5') is
then passed to the float constructor as an argument. The float construc-
tor does its work and the constructor returns a floating point number,
82.5. Now, when we pass this value to the function kg_to_pounds(), ev-
erything works just fine.

If you’ve seen mathematical functions before this is no different from
something like

𝑓(𝑔(𝑥))
where we would first calculate 𝑔(𝑥) and then apply 𝑓 to the result.

Another scenario with a nasty bug
Consider this program which has a nasty bug:

"""This program has a bug!
It does not add as you might expect. """

a = input("Enter an integer: ")
b = input("Enter another integer: ")
print(a + b)

Can you see what the bug is?
Imagine what would happen if at the first prompt the user typed “42”

and at the second prompt the user typed “10”. Of course, 42 plus 10
equals 52, but is that what this program would print?

No. Here’s a trial run of this program:

Enter an integer: 42
Enter another integer: 10
4210

Converting strings to numeric types 113

“4210” is not the correct result! What happened?
Remember, input() always returns a string, so in the program above,

a is a string and b is a string. Thus, when we perform the operation a +
b it’s not addition, it’s string concatenation!

What do we do in cases like this? In order to perform arithmetic with
user-supplied values from input(), we first need to convert input strings
to numeric types (as above).

"""This program fixes the bug in the earlier program."""

a = input("Enter an integer: ")
b = input("Enter another integer: ")
a = int(a)
b = int(b)
print(a + b)

We can make this a little more concise:

"""Prompt the user for two integers and display the sum."""

a = int(input("Enter an integer: "))
b = int(input("Enter another integer: "))
print(a + b)

Conversion may fail
While the code samples above work fine if the user follows instructions
and enters numeric strings that can be converted to integers, users don’t
always read instructions and they aren’t always well-behaved. For exam-
ple, if a misbehaved user were to enter values that cannot be converted
to integers, we might see a session like this:

Enter an integer: cheese
Enter another integer: bananas
Traceback (most recent call last):
File "/myfiles/addition_fixed.py", line 5, in <module>

a = int(a)
ValueError: invalid literal for int() with base 10: 'cheese'

Process finished with exit code 1

This occurs because 'cheese' cannot be converted to an int. In
this case, Python reports a ValueError and indicates the invalid literal
'cheese'. We’ll see how to handle problems like this later on in Chapter
15.

input() does not validate input
It’s important to note that input() does not validate the user’s input.

114 Console I/O

Validation is a process whereby we check to ensure that input from a
user or some other source meets certain criteria. That’s a big topic we’ll
touch on later, but for now, just keep in mind that the user can type just
about anything at a prompt and input() will return whatever the user
typed—without checking anything.

So a different session with the same program (above) might be

What is your name? -1
-1

Be warned.

Don’t use names that collide with names of built-in
Python functions!
As noted, input, int, and float are names of built-in Python functions.
It’s very important that you do not use such names as names for your own
functions or variables. In doing so, for example, you’d be reassigning the
name input, and thus the input() function would no longer be accessible.
For example, this

input = input('What is your name? ')
print(input) # so far, so good -- prints what the user typed
input = input('What is your quest? ')
print(input)

fails miserably, with

Traceback (most recent call last):
File ".../3.10/lib/python3.10/code.py", line 90, in runcode

exec(code, self.locals)
File "<input>", line 1, in <module>

TypeError: 'str' object is not callable

What happened? We assigned the result to an object named input,
so after the first line (above) is executed, input no longer refers to the
function, but instead is now a string (hence the error message “ ‘str’
object is not callable”).

So be careful to choose good names and avoid collisions with built-ins.

Additional resources
The documentation for any programming language can be a bit technical.
But it can’t hurt to take a look at the documentation for input(), int(),
and float(). If it makes your head spin, just navigate away and move on.
But maybe the documentation can deepen your understanding of these
functions. See relevant sections of:

• https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Some ways to format output 115

7.5 Some ways to format output
Say we want to write a program which prompts a user for some number
and calculates the square of that number. Here’s a program that does
just that:

"""A program to square a number provided by the user
and display the result. """

x = input("Enter a number: ")
x = float(x)
result = x * x
print(result)

That’s fine, but perhaps we could make this more friendly. Let’s say we
wanted to print the result like this.

17.0 squared is 289.0

How would we go about it? There are a few ways. One somewhat clunky
approach would be to use string concatenation. Now, we cannot do this:

"""A program to square a number provided by the user
and display the result. """

x = input("Enter a number: ")
x = float(x)
result = x * x
print(x + ' squared is ' + result)

This program fails, with the error:

Traceback (most recent call last):
File ".../squared_with_concatenation.py", line 4, in <module>

print(x + ' squared is ' + result)
TypeError: unsupported operand type(s) for +: 'float' and 'str'

Why? Because we cannot concatenate floats and strings. One way to fix
this would be to explicitly convert the floating-point values to strings.
We can do this—explicitly—by using Python’s built-in function str().

"""A program to square a number provided by the user
and display the result. """

x = input("Enter a number: ")
x = float(x)
result = x * x
print(str(x) + ' squared is ' + str(result))

Now, this works. Here’s a trial.

116 Console I/O

Enter a number: 17
17.0 squared is 289.0

Again, this works, but it’s not a particularly elegant solution. If you were
to think “there must be a better way” you’d be right!

7.6 Python f-strings and string interpolation
The approach described above is valid Python, but there’s a better way.
Earlier versions of Python offered a form of string interpolation borrowed
from the C programming language and the string format() function (nei-
ther of which are presented here). These are still available, but are largely
superseded. With Python 3.6 came f-strings.1

f-strings provide an improved approach to string interpolation. They
are, essentially, template strings with placeholders for values we wish to
interpolate into the string.

An f-string is prefixed with the letter f, thus:

f'I am an f-string, albeit a boring one.'

The prefix tells the Python interpreter that this is an f-string.
Within the f-string, we can include names of objects or expressions

we wish to interpolate within curly braces (these are called replacement
fields). For example,

>>> name = 'Carol'
>>> f'My name is {name}.'
My name is Carol.
>>> favorite_number = 498
>>> f'My favorite number is {favorite_number}.'
My favorite number is 498.
>>> f'My favorite number is {400 + 90 + 8}.'
My favorite number is 498.

Here’s how we’d solve our earlier problem above using f-strings.

"""A program to square a number provided by the user
and display the result. """

x = input("Enter a number: ")
x = float(x)
result = x * x
print(f'{x} squared is {result}')

1“F-string” is short for “formatted string literal”. These were introduced in
Python 3.6. For details, see the Input and Output section of the official Python
tutorial (https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-
literals), and PEP 498 (https://peps.python.org/pep-0498/) for a complete ratio-
nale behind literal string interpolation.

https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals
https://peps.python.org/pep-0498/

Format specifiers 117

7.7 Format specifiers
Let’s say the result of some calculation was 1/3. The decimal expansion
of this is 0.333… Let’s print this.

>>> 1 / 3
0.3333333333333333

Now, in this example, it’s unlikely that you’d need or want to display
0.3333333333333333 to quite so many decimal places. Usually, it suffices
to print fewer digits to the right of the decimal point, for example, 0.33
or 0.3333. If we were to interpolate this value within an f-string, we’d
get a similar result.

>>> x = 1 / 3
>>> f'{x}'
'0.3333333333333333'

Fortunately, we can tell Python how many decimal places we wish to
use. We can include a format specifier within our f-string.

>>> x = 1 / 3
>>> f'{x:.2f}'
'0.33'

The syntax for this is to follow the interpolated element with a colon
: and then a specifier for the desired format. In the example above, we
used .2f meaning “display as a floating-point number to two decimal
places precision”. Notice what happens here:

>>> x = 2 / 3
>>> f'{x:.2f}'
'0.67'

Python has taken care of rounding for us, rounding the value
0.6666666666666666 to two decimal places. Unless you have very spe-
cific reasons not to do so, you should use f-strings for formatting output.

There are many format specifiers we can use. Here are a few:

Format a floating-point number as a percentage.

>>> x = 2 / 3
>>> f'{x:.2%}'
'66.67%'

118 Console I/O

Format an integer with comma-separated thousands

>>> x = 1234567890
>>> f'{x:,}'
'1,234,567,890'

Format a floating-point number with comma-separated
thousands

>>> gdp = 22996100000000 # USA gross domestic product
>>> population = 331893745 # USA population, 2021 est.
>>> gdp_per_capita = gdp / population
>>> f'${gdp_per_capita:,.2f}'
'$69,287.54'

7.8 Scientific notation
Using E as a format specifier will result in normalized scientific notation.

>>> x = 1234567890
>>> f"{x:.4E}"
'1.2346E+09'

7.9 Formatting tables
It’s not uncommon that we wish to print data or results of calculations
in tabular form. For this, we need to be able to specify width of a field
or column, and the alignment of a field or column. For example, say we
wanted to print a table like this:2

GDP Population GDP per
Country ($ billion) (million) capita ($)

Chad 11.780 16.818 700
Chile 317.059 19.768 16,039
China 17,734.063 1,412.600 12,554
Colombia 314.323 51.049 6,157

We’d want to left-align the “Country” column, and right-align num-
bers (numbers, in almost all cases should be right-aligned, and if the dec-
imal point is displayed, all decimal points should be aligned vertically).
Let’s see how to do that with f-strings and format specifiers. We’ll start
with the column headings.

2Sources: 2021 GDP from World Bank (https://data.worldbank.org/); 2021
population from the United Nations (https://www.un.org/development/desa/pd/).

https://data.worldbank.org/
https://www.un.org/development/desa/pd/

Formatting tables 119

print(f'{"":<12}'
f'{"GDP":>16}'
f'{"Population":>16}'
f'{"GDP per":>16}')

print(f'{"Country":<12}'
f'{"($ billion)":>16}'
f'{"(million)":>16}'
f'{"capita ($)":>16}')

This would have been a little long as two single lines, so it’s been split
into multiple lines.3 This prints the column headings:

GDP Population GDP per
Country ($ billion) (million) capita ($)

< is used for left-alignment (it points left). > is used for right-alignment
(it points right). The numbers in the format specifiers (above) designate
the width of the field (or column), so the country column is 12 characters
wide, GDP column is 16 characters wide, etc.

Now let’s see about a horizontal rule, dividing the column headings
from the data. For that we can use repeated concatenation.

print('-' * 60) # prints 60 hyphens

So now we have

print(f'{"":<12}'
f'{"GDP":>16}'
f'{"Population":>16}'
f'{"GDP per":>16}')

print(f'{"Country":<12}'
f'{"($ billion)":>16}'
f'{"(million)":>16}'
f'{"capita ($)":>16}')

print('-' * 60)

which prints:

GDP Population GDP per
Country ($ billion) (million) capita ($)

Now we need to handle the data. Let’s say we have the data in this
form:

3This takes advantage of the fact that when Python sees two strings without an
operator between them it will concatenate them automatically. Don’t do this just to
save keystrokes. It’s best to reserve this feature for handling long lines or building
long strings across multiple lines.

120 Console I/O

gdp_chad = 11.780
gdp_chile = 317.059
gdp_china = 17734.063
gdp_colombia = 314.323
pop_chad = 16.818
pop_chile = 19.768
pop_china = 1412.600
pop_colombia = 51.049

(Yeah. This is a little clunky. We’ll learn better ways to handle data
later.) We could print the rows in our table like this:

print(f'{"Chad":<12}'
f'{gdp_chad:>16,.3f}'
f'{pop_chad:>16,.3f}'
f'{gdp_chad / pop_chad * 1000:>16,.0f}')

print(f'{"Chile":<12}'
f'{gdp_chile:>16,.3f}'
f'{pop_chile:>16,.3f}'
f'{gdp_chile / pop_chile * 1000:>16,.0f}')

print(f'{"China":<12}'
f'{gdp_china:>16,.3f}'
f'{pop_china:>16,.3f}'
f'{gdp_china / pop_china * 1000:>16,.0f}')

print(f'{"Colombia":<12}'
f'{gdp_colombia:>16,.3f}'
f'{pop_colombia:>16,.3f}'
f'{gdp_colombia / pop_colombia * 1000:>16,.0f}')

(Yeah. This is a little clunky too. We’ll see better ways soon.) Notice
that we can combine format specifiers, so for values in the GDP column
we have a format specifier

>16,.3f

The first symbol > indicates that the column should be right-aligned. The
16 indicates the width of the column. The , indicates that we should use
a comma as a thousands separator. .3f indicates formatting as a float-
ing point number, with three decimal places of precision. Other format
specifiers are similar.

Putting it all together we have:

gdp_chad = 11.780
gdp_chile = 317.059
gdp_china = 17734.063
gdp_colombia = 314.323

Example: currency converter 121

pop_chad = 16.818
pop_chile = 19.768
pop_china = 1412.600
pop_colombia = 51.049

print(f'{"":<12}'
f'{"GDP":>16}'
f'{"Population":>16}'
f'{"GDP per":>16}')

print(f'{"Country":<12}'
f'{"($ billion)":>16}'
f'{"(million)":>16}'
f'{"capita ($)":>16}')

print('-' * 60)

print(f'{"Chad":<12}'
f'{gdp_chad:>16,.3f}'
f'{pop_chad:>16,.3f}'
f'{gdp_chad / pop_chad * 1000:>16,.0f}')

print(f'{"Chile":<12}'
f'{gdp_chile:>16,.3f}'
f'{pop_chile:>16,.3f}'
f'{gdp_chile / pop_chile * 1000:>16,.0f}')

print(f'{"China":<12}'
f'{gdp_china:>16,.3f}'
f'{pop_china:>16,.3f}'
f'{gdp_china / pop_china * 1000:>16,.0f}')

print(f'{"Colombia":<12}'
f'{gdp_colombia:>16,.3f}'
f'{pop_colombia:>16,.3f}'
f'{gdp_colombia / pop_colombia * 1000:>16,.0f}')

which prints:

GDP Population GDP per
Country ($ billion) (million) capita ($)

Chad 11.780 16.818 700
Chile 317.059 19.768 16,039
China 17,734.063 1,412.600 12,554
Colombia 314.323 51.049 6,157

7.10 Example: currency converter
We’re starting with programs that take some input, perform some simple
calculations, and display some output.

122 Console I/O

Here we’ll demonstrate a currency converter. Consider how we’d like
such a program to behave, assuming we need the exchange rate as a
user-supplied input. What’s the information we’d need to perform the
calculation?

• The amount we’d like to convert.
• A label for the currency we’d like to convert, for example, USD,

CAD, MXN, BRL, EUR, etc.4 We’ll call this the source currency.
• An exchange rate.
• A label for the currency we want to receive (as above). We’ll call

this the target currency.

Let’s imagine how this might work:

1. The user is prompted for a source currency label.
2. The user is prompted for a target currency label.
3. The user is prompted for an amount (in the source currency).
4. The user is prompted for an exchange rate.
5. The program displays the result.

This raises the question: how do we express the exchange rate? One
approach would be to express the rate as the ratio of the value of the
source currency unit to the target currency unit. For example, as of this
writing, one US dollar (USD) is equivalent to 1.3134 Canadian dollars
(CAD).

Taking this approach, we’ll multiply the source currency amount by
the exchange rate to get the equivalent value in the target currency.
Here’s how a session might proceed:

Enter source currency label: USD
Enter target currency label: CAD
OK. We will convert USD to CAD.
Enter the amount in USD you wish to convert: 1.00
Enter the exchange rate (USD/CAD): 1.3134
1.00 USD is worth 1.31 CAD

At this point, we don’t have all the tools we’d need to validate input
from the user, so for this program we’ll trust the user to be well-behaved
and to enter reasonable labels and rates. (We’ll see more on input vali-
dation and exception handling soon.) With this proviso, here’s how we
might start this program:

source_label = input('Enter source currency label: ')
target_label = input('Enter target currency label: ')
print(f'OK. We will convert {source_label} '

f'to {target_label}.')

This code will prompt the user for source and target labels and then
print out the conversion the user has requested. Notice that we use an
f-string to interpolate the user-supplied labels.

4For three-character ISO 4217 standard currency codes, see: https://en.wikiped
ia.org/wiki/ISO_4217.

https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/ISO_4217

Example: currency converter 123

Now we need two other bits of information: the amount we wish to
convert, and the exchange rate. (Here we’ll use the \, which, when used
as shown, signifies an explicit line continuation in Python. Python will
automatically join the lines.)5

source_prompt = f'Enter the amount in {source_label} ' \
f'you wish to convert: '

ex_rate_prompt = f'Enter the exchange rate ' \
f'({source_label}/{target_label}): '

source_amount = float(input(source_prompt))
exchange_rate = float(input(ex_rate_prompt))

At this point, we have both labels source_label and target_label, the
amount we wish to convert stored as source_amount, and the exchange
rate stored as exchange_rate. The labels are of type str. The source
amount and the exchange rate are of type float.

Giving these objects significant names (rather than x, y, z, …) makes
the code easy to read and understand.

Now, on to the calculation. Since we have the rate expressed as a
ratio of the value of a unit of the source currency to a unit of the target
currency, all we need to do is multiply.

target_amount = source_amount * exchange_rate

See how choosing good names makes things so clear? You should aim
for similar clarity when naming objects and putting them to use.

The only thing left is to print the result. Again, we’ll use f-strings,
but this time we’ll include format specifiers to display the results to two
decimal places of precision.

print(f'{source_amount:,.2f} {source_label} is worth '
f'{target_amount:,.2f} {target_label}')

Putting it all together we get:

"""
Currency Converter
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210

Prompts users for two currencies, amount to convert,
and exchange rate, and then performs the conversion

5From the Python documentation: Two or more physical lines may be joined
into logical lines using backslash characters (), as follows: when a physical line ends
in a backslash that is not part of a string literal or comment, it is joined with
the following forming a single logical line, deleting the backslash and the following
end-of-line character (https://docs.python.org/3/reference/lexical_analysis.html).

https://docs.python.org/3/reference/lexical_analysis.html

124 Console I/O

and displays the result.
"""

source_label = input('Enter source currency label: ')
target_label = input('Enter target currency label: ')
print(f'OK. We will convert {source_label} '

f'to {target_label}.')

source_prompt = f'Enter the amount in {source_label} ' \
f'you wish to convert: '

ex_rate_prompt = f'Enter the exchange rate ' \
f'({source_label}/{target_label}): '

source_amount = float(input(source_prompt))
exchange_rate = float(input(ex_rate_prompt))

target_amount = source_amount * exchange_rate

print(f'{source_amount:,.2f} {source_label} is worth '
f'{target_amount:,.2f} {target_label}')

Notice that we don’t need any comments to explain our code. By
choosing good names we’ve made comments unnecessary!

We’ll revisit this program, making improvements as we acquire more
tools.

Feel free to copy, save, and run this code. There are lots of websites
which provide exchange rates and perform such conversions. One such
website is the Xe Currency Converter (https://www.xe.com/currencyc
onverter/).

7.11 Format specifiers: a quick reference
Format specifiers actually constitute a “mini-language” of their own. For
a complete reference, see the section entitled “Format Specification Mini-
Language” in the Python documentation for strings (https://docs.pyt
hon.org/3/library/string.html).

Remember that format specifiers are optionally included in f-string re-
placement fields. The format specifier is separated from the replacement
expression by a colon. Examples:

>>> x = 0.16251`
>>> f'{x:.1%}'
'16.3%'
>>> f'{x:.2f}'
'0.16'
>>> f'{x:>12}'
' 0.16251'

https://www.xe.com/currencyconverter/
https://www.xe.com/currencyconverter/
https://docs.python.org/3/library/string.html
https://docs.python.org/3/library/string.html

Exceptions 125

>>> f'{x:.3E}'
'1.625E-01'

Here’s a quick reference for some commonly used format specifiers:

option meaning example
< align left, can be combined with width <12
> align right, can be combined with width >15
f fixed point notation, combined with precision .2f
% percentage (multiplies by 100 automatically) .1%
, use thousands separators, for example, 1,000 ,
E scientific notation, combined with precision .4E

7.12 Exceptions

ValueError

In an earlier chapter, we saw how trying to use math.sqrt() with a neg-
ative number as an argument results in a ValueError.

In this chapter we’ve seen another case of ValueError—where inputs
to numeric constructors, int() and float(), are invalid. These functions
take strings, so the issue isn’t the type of the argument. Rather, it’s an
issue with the value of the argument—some strings cannot be used to
construct an object of numeric types.

For example,

>>> int('5')
5
>>> int('5.0')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: '5.0'
>>> int('kumquat')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid literal for int() with base 10: 'kumquat'

The first call, with the argument '5' succeeds because the string '5'
can be used to construct an object of type int. The other two calls fail
with a ValueError.

int('5.0') fails because Python doesn’t know what to do about the
decimal point when trying to construct an int. Even though 5.0 has a
corresponding integer value, 5, Python rejects this input and raises a
ValueError.

The last example, int('kumquat'), fails for the obvious reason that
the string 'kumquat' cannot be used to construct an integer.

What about the float constructor, float()? Most numeric strings are
valid arguments to the float constructor. Examples:

126 Console I/O

>>> float('3.1415926')
3.1415926
>>> float('7')
7.0
>>> float('6.02E23')
6.02e+23

The first example should be obvious. The second example is OK be-
cause '7' can be used to construct a float. Notice the result of float('7')
is 7.0. The third example shows that the float constructor works when
using scientific notation as well.

Python has special values for positive and negative infinity (these do
come in handy from time to time), and the float constructor can handle
the following strings:

>>> float('+inf')
inf
>>> float('-inf')
-inf

Here are some examples of conversions that will fail, resulting in
ValueError.

>>> float('1,000')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: '1,000'
>>> float('pi')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: 'pi'
>>> float('one')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: 'one'
>>> float('toothache')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not convert string to float: 'toothache'

What about the string constructor, str()? It turns out that this can
never fail, since all objects in Python have a default string representation.
There’s no object type that can’t be turned into a string! Even things like
functions have a default string representation (though this representation
isn’t particularly human-friendly). Example:

Exercises 127

>>> def f():
... return 0
...
>>> str(f)
'<function f at 0x10101ea70>'

7.13 Exercises
Exercise 01
The following code has a bug. Instead of printing what the user types, it
prints <built-in function input>. What’s wrong and how would you fix
it?

input('Please enter your name: ')
print(input)

Exercise 02
Which of the following are valid arguments to the int() constructor?
(Try these out in a Python shell.)

a. '1'
b. '1.0'
c. '-3'
d. 5
e. 'pumpkin'
f. '1,000'
g. '+1 802 555 1212'
h. '192.168.1.1'
i. '2023-01-15'
j. '2023/01/15'
k. 2023-01-15
l. 2023/01/15

Exercise 03
Which of the following are valid arguments to the float() constructor?
(Try these out in a Python shell.)

a. 3.141592
b. 'A'
c. '5.0 + 1.0'
d. '17'
e. 'inf' (Be sure to try this one out! What do you think it means?)
f. 2023/01/15
g. 2023/1/15

128 Console I/O

Exercise 04
Write a program which prompts the user for two floating-point numbers
and displays the product of the two numbers entered. Example:

Enter a floating-point number: 3.14159
Enter another floating-point number: 17
53.40703

Notice here that the second input is an integer string. It’s easy to
treat an input like this as an integer, just as easily as we could write
“17.0” instead of “17”.

>>> float(17)
17.0

Exercise 05
Write a program which prompts the user for their name and then prints
‘Hello’ followed by the user’s name. Example:

What is your name? Egbert
Hello Egbert

Chapter 8

Branching and Boolean
expressions

In this chapter, we’ll further our understanding of Booleans and Boolean
expressions, learn about branching and flow control, and learn some con-
venient string methods.

Learning objectives
• You will learn more about Booleans, how to construct a truth table,

and how to combine Booleans using the connectives and and or.
• You will learn how to write if, if/else, if/elif, and if/elif/else state-

ments in Python, which allow program execution to follow different
branches based on certain conditions.

• You will learn how to represent decisions using and decision trees.
• You will learn a little about input validation.
• You will learn how to use convenient string methods such as

.upper(), .lower(), and .capitalize().

Terms and string methods introduced
• Boolean expression
• branching
• .capitalize()
• comparison operator
• conditional
• De Morgan’s Laws
• decision tree
• falsiness
• lexicographic order
• .lower()
• string method
• truth value
• truthiness
• .upper()

129

130 Branching and Boolean expressions

8.1 Boolean logic and Boolean expressions
Boolean expressions and Boolean logic are widely used in mathematics,
computer science, computer programming, and philosophy. These take
their name from the 19th century mathematician and logician George
Boole. His motivation was to systematize and formalize the logic that
philosophers and others used, which had come down to us from ancient
Greece, primarily due to Aristotle.

The fundamental idea is really quite simple: we have truth values—
true or false—and rules for simplifying compound expressions.

It’s easiest to explain by example. We’ll start with informal presenta-
tion, and then formalize things a little later.

Say we have this sentence “It is raining.” Now, either it is, or it is
not raining. If it is raining, we say that this sentence is true. If it is not
raining, we say that this sentence is false.

We call a sentence like this a proposition.
Notice that there is no middle ground here. From our perspective, a

proposition like this is either true or false. It can’t be 67% true and 33%
false, for example. We call this the law of the excluded middle.

Another way of stating this law is that either a proposition is true,
or its negation is true. That is to say, either “It is raining” is true or its
negation, “It is not raining” (or “It is not the case that it is raining”) is
true. One or the other.1

What does this mean for us as computer programmers? Sometimes
we want our code to do one thing if a certain condition is true, and do
something different if that condition is false (not true). Without this
ability, our programs would be very inflexible.

But before we get to coding, let’s learn a little more about Boolean
expressions.

Boolean expressions
What is a Boolean expression? Well, true and false are both Boolean
expressions. We can build more complex expressions using the Boolean
connectives not, and, and or.

We often use truth tables to demonstrate. Here’s the simplest possible
truth table. We usually abbreviate true and false as T and F, respectively,
but here we’ll stick with the Python Boolean literals True and False.

Expression Truth value
True True
False False

1There are some logicians who reject the law of the excluded middle. Consider
this proposition called the liar paradox or Epimenides paradox: “This statement
is false.” Is this true or false? If it’s true it’s false, if it’s false it’s true! Some take
this as an example of where the law of the excluded middle fails. Thankfully, we
don’t need to worry about this in this textbook, but if you’re curious, see: Law
of the excluded middle (Wikipedia). There’s even an episode in the original Star
Trek television series, in which Captain Kirk and Harry Mudd defeat a humanoid
robot by confronting it with the liar’s paradox. You can view it on YouTube: https:
//www.youtube.com/watch?v=QqCiw0wD44U.

https://www.youtube.com/watch?v=QqCiw0wD44U
https://www.youtube.com/watch?v=QqCiw0wD44U

Boolean logic and Boolean expressions 131

True is true, and false is false (big surprise, I know).
Now let’s go crazy and mix it up. We’ll begin with the Boolean con-

nective not. not simply negates the value or expression which follows.

Expression Truth value
True True
False False
not True False
not False True

Now let’s see what happens with the other connectives, and and or.
Some languages have special symbols for these (for example, Java uses &&
and || for and and or respectively). In Python, we simply use and and
or. When we use these connectives, we refer to the expressions being
connected as clauses.

Expression Truth value
True and True True
True and False False
False and True False
False and False False

So when using the conjunctive and, the expression is true if and only
if both clauses are true. In all other cases (above) the expression is false.

Here’s or.

Expression Truth value
True or True True
True or False True
False or True True
False or False False

You see, in the case of or, as long as one clause is true, the entire
expression is true. It is only when both clauses are false that the entire
expression is false.

We refer to clauses joined by and as a conjunction. We refer to clauses
joined by or as a disjunction. Let’s try this out in the Python shell:

>>> True
True
>>> False
False
>>> not True
False
>>> not False
True
>>> True and True

132 Branching and Boolean expressions

True
>>> True and False
False
>>> False and True
False
>>> False and False
False
>>> True or True
True
>>> True or False
True
>>> False or True
True
>>> False or False
False

Now, we don’t usually use literals like this in our code. Usually, we
want to test some condition to see if it evaluates to True or False. Then
our program does one thing if the condition is true and a different thing
if the condition is false. We’ll see how this works in another section.

De Morgan’s Laws
When working with Boolean expressions De Morgan’s Laws provide us
with handy rules for transforming Boolean expressions from one form
to another. Here we’ll use a and b to stand in for arbitrary Boolean
expressions.

not (a or b) is the same as (not a) and (not b)
not (a and b) is the same as (not a) or (not b)

You can think of this as a kind of distributive law for negation. We
distribute the not over the disjunction (a or b), but when we do, we
change the or to and. By the same token, we distribute not over the
conjunction (a and b), but when we do, we change the and to or.

You’ll see these may come in handy when we get to input validation
(among other applications).

Supplemental information
If you’d like to explore this further, here are some good resources:

• Stanford Encyclopedia of Philosophy’s entry on George Boole: ht
tps://plato.stanford.edu/entries/boole

• Boolean Algebra (Wikipedia): https://en.wikipedia.org/wiki/Bool
ean_algebra

• De Morgan’s Laws (Wikipedia): https://en.wikipedia.org/wiki/De
_Morgan%27s_laws

https://plato.stanford.edu/entries/boole
https://plato.stanford.edu/entries/boole
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/De_Morgan%27s_laws
https://en.wikipedia.org/wiki/De_Morgan%27s_laws

Comparison operators 133

8.2 Comparison operators
It is often the case that we wish to compare two objects or two values.
We do this with comparison operators.

Comparison operators compare two objects (or the values of these
objects) and return a Boolean True if the comparison holds, and False if
it does not.

Python provides us with the following comparison operators (and
more):

Operator Example Explanation
== a == b Does the value of a equal the value of b?
> a > b Is the value of a greater than the value of b?
< a < b Is the value of a less than the value of b?
>= a >= b Is the value of a greater than or equal to the value

of b?
<= a <= b Is the value of a less than or equal to the value of

b?
!= a != b Is the value of a not equal to the value of b?

It’s important to understand that these operators perform compar-
isons and expressions which use them to evaluate to a Boolean value
(True or False).

Let’s demonstrate in the Python shell.

>>> a = 12
>>> b = 31
>>> a == b
False
>>> a > b
False
>>> a < b
True
>>> a >= b
False
>>> a <= b
True
>>> a != b
True
>>> not (a == b)
True

Now what happens in the case of strings? Let’s try it and find out!

>>> a = 'duck'
>>> b = 'swan'
>>> a == b
False
>>> a > b
False

134 Branching and Boolean expressions

>>> a < b
True
>>> a >= b
False
>>> a <= b
True
>>> a != b
True
>>> not (a == b)
True

What’s going on here? When we compare strings, we compare them
lexicographically. A string is less than another string if its lexicographic
order is lower than the other. A string is greater than another string if
its lexicographic order is greater than the other.

What is lexicographic order?
Lexicographic order is like alphabetic order, but is somewhat more gen-
eral. Consider our example ‘duck’ and ‘swan’. This is an easy case, since
both are four characters long, so alphabetizing them is straightforward.

But what about ‘a’ and ‘aa’? Which comes first? Both start with ‘a’
so their first character is the same. If you look in a dictionary you’ll find
that ‘a’ appears before ‘aa’.2 Why? Because when comparing strings of
different lengths, the comparison is made as if the shorter string were
padded with an invisible character which comes before all other char-
acters in the ordering. Hence, ‘a’ comes before ‘aa’ in a lexicographic
ordering.

>>> 'a' < 'aa'
True
>> 'a' > 'aa'
False

The situation is a little more complex than this, because strings can
have any character in them (not just letters, and hence the term “alpha-
betic order” loses its meaning). So what Python actually compares are
the code points of Unicode characters. Unicode is the system that Python
uses to encode character information, and Unicode includes many other
alphabets (Arabic, Armenian, Cyrillic, Greek, Hangul, Hebrew, Hindi,
Telugu, Thai, etc.), symbols from non-alphabetic languages such as Chi-
nese or Japanese Kanji, and many special symbols (®, €, ±, ∞, etc.).
Each character has a number associated with it called a code point (yes,
this is a bit of a simplification). In comparing strings, Python compares
these values.3

2Yes, “aa” is a word, sometimes spelled “a’a”. It comes from the Hawai’ian, mean-
ing rough and jagged cooled lava (as opposed to pahoehoe, which is very smooth).

3If you want to get really nosy about this, you can use the Python built-in
function ord() to get the numeric value associated with each character. E.g.,
>>> ord('A')
65

Branching 135

Thus, 'duck' < 'swan' evaluates to True, 'wing' < 'wings' evaluates
to True, and 'bingo' < 'bin' evaluates to False.

>>> 'duck' < 'swan'
True
>>> 'wing' < 'wings'
True
>>> 'bingo' < 'bin'
False

Now, you may wonder what happens in alphabetic systems, like En-
glish and modern European languages, which have majuscule (upper-
case) and miniscule (lower-case) letters (not all alphabetic systems have
this distinction).

'a' > 'A'
True
'a' < 'A'
False

Upper-case letters have lower order than lower-case letters.

>>> 'ALPHA' < 'aLPHA'
True

So keep this in mind when comparing strings.

8.3 Branching
Up until this point, all the programs we’ve seen and written proceed in
a linear fashion from beginning to end. This is fine for some programs,
but it’s rather inflexible. Sometimes we want our program to respond
differently to different conditions.

Imagine we wanted to write a program that calculates someone’s in-
come tax. The US Internal Revenue Service recognizes five different filing
statuses:

>>> ord('a')
97
>>> ord('b')
98
>>> ord('£')
163

See also: Joel Spolsky’s The Absolute Minimum Every Software Developer Ab-
solutely, Positively Must Know About Unicode and Character Sets (No Excuses!)
last seen in the wild at https://www.joelonsoftware.com/2003/10/08/the-absolute-
minimum-every-software-developer-absolutely-positively-must-know-about-unicode-
and-character-sets-no-excuses/

136 Branching and Boolean expressions

• single,
• married, filing jointly,
• married, filing separately,
• head of household,
• qualifying widow or widower with dependent child.4

So in writing our program we’d need to prompt the user for different
questions, gather different data, perform different calculations, and use
different tax tables depending on a user’s filing status. Obviously, this
cannot be done in a strictly linear fashion.

Instead, we’d want our program to be able to make decisions, and
follow different branches, depending on the results of those decisions.

This example of an income tax program is by no means unusual. In
fact, most real-world programs involve some kind of branching.

When our program includes branches, we execute different portions
of our program depending on certain conditions. Which conditions might
those be? It depends entirely on the program we wish to write.

Thus, most programming languages (Python included) allow for con-
trol flow—which includes branching and conditional execution of code.

How do we do this? In Python, we accomplish this with if, elif and
else statements (or combinations thereof).

8.4 if, elif, and else

if, elif, and else work with Boolean expressions to determine which
branch (or branches) our program will execute.

Since tax preparation is complicated, let’s consider more modest ex-
amples.

Examples using if, elif, and else

A minimal program we could write using if and else might work like
this:

• Prompt the user to guess a magic word.
• If the user guesses correctly, print “You WIN!”
• If the user does not guess correctly, print “You LOSE!”

Let’s think about what we’d need for this program to work:

• A secret word.
• Prompt the user for their guess.
• Then compare the user’s guess with the secret word.
• Print the appropriate message.

Here’s how we can do this in Python using if and else.

4Discussion of the fairness or consequences of such a classification is outside the
scope of this text—a state of affairs that suits this author just fine.

if, elif, and else 137

"""
CS1210
Guess the secret word
"""

secret_word = "secret"

user_guess = input("What do you think the secret word is? ")

if user_guess == secret_word:
print("You WIN!")

else:
print("You LOSE!")

Here’s another example, but this time we’re using a nested if statement
and an elif (which is a portmanteau of “else” and “if”):

"""
CS 1210
What's for dinner?
"""

bank_balance = float(input('What is your bank balance $? '))

if bank_balance < 20.0:
meal_points = input('Do you have any meal points? y/n: ')
if meal_points == 'y':

print('Eat at the dining hall.')
else:

print('Eat that leftover burrito.')
elif bank_balance < 50.0:

print('Order pizza from Leonardo\'s')
else:

print('Go out to Tiny Thai in Winooski with a friend!')

First we prompt the user for their bank balance. If this amount is less
than $20.00 then we prompt the user again to find out if they have any
meal points left. If they do, that is, if meal_points == 'y', we print “Eat
at the dining hall.” If not, we print “Eat that leftover burrito.”

Now, what happens if that very first condition is false? If that’s false,
we know we have more than $20.00, so our next comparison is:

elif bank_balance < 50.0:

138 Branching and Boolean expressions

Why not

elif bank_balance >= 20 and bank_balance < 50.0:

you might ask? Because we only reach the elif if the first condition is
false. There’s no need to check again.

So if the bank balance is greater than or equal to $20.00 and less than
$50.00 we print “Order pizza from Leonardo’s”.

Now, what if the bank balance is greater than or equal to $50.00? We
print “Go out to Tiny Thai in Winooski with a friend!”.

We can have a single if statement, without elif or else. We can also,
as we’ve just seen, write compound statements which combine if and
else, if and elif, or all three, if, elif, and else. We refer to each block
of code in such compound statements as clauses (distinct from clauses
in a compound Boolean expression).

Some important things to keep in mind
1. If we have a compound if/else statement in our program either the

body of the if clause is executed or the body of the else clause is
executed—never both.

2. If we have a compound if/elif/else statement in our program, the
body of only one of the branches is executed.

Supplemental resources
For more on control of flow, see: https://docs.python.org/3/tutorial/c
ontrolflow.html

8.5 Truthy and falsey
Python allows many shortcuts with Boolean expressions. Most every-
thing in Python has a truth value. As noted earlier, we refer to the truth
values of anything other than Booleans with the whimsical terms “truthy”
and “falsey” (we also use the terms “truthiness” and “falsiness”).

When used in Boolean expressions and conditions for loops or branch-
ing (if/elif), truthy values are treated (more-or-less) as True, and falsey
values are treated (more-or-less) as False.

https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/tutorial/controlflow.html

Input validation 139

Truthy things Falsey things
any non-zero valued int or float, 0, 0.0
5, -17, 3.1415

any non-empty list, the empty list, []
['foo'], [0], ['a', 'b', 'c']

any non-empty tuple, the empty tuple, ()
(42.781, -73.901), ('vladimir')

any non-empty string, the empty string, ""
"bluster", "kimchee"

This allows us to use conditions such as these:

if x % 2:
it's odd
print(f"{x} is odd")

if not s:
print("The string, s, is empty!")

If you want to know if something is truthy or falsey in Python, you
can pass the value or expression to the Boolean constructor, bool().

>>> bool(1)
True
>>> bool(-1)
True
>>> bool(0)
False
>>> bool('xyz')
True
>>> bool('')
False
>>> bool(None)
False

8.6 Input validation
Earlier, we wrote a Python program to convert kilograms to pounds.
We trusted the user to provide a valid integer or float for weight in
kilograms, and we did nothing to ensure that the information provided
was reasonable. That is, we did not validate the input.

Validation of input is a crucial part of any program that accepts
user input. Users sometimes provide invalid input. Some reasons for this
include:

140 Branching and Boolean expressions

• The prompt was insufficiently clear.
• The user did not read the prompt carefully.
• The user did not understand what kind of input is needed.
• The user was being mischievous—trying to break the program.
• The user made a typo or formatting error when entering data.

We would like our programs to respond gracefully to invalid input.
In this textbook, we’ll see several different ways to validate input and

to respond to invalid input. The first that we’ll learn right now is simple
bounds checking.

Bounds checking is an approach to input validation which ensures
that a value is in some desired range. To return to our kilogram to
pound conversion program, it does not make sense for the user to enter a
negative value for the weight in kilograms. We might guard against this
with bounds checking.

POUNDS_PER_KILOGRAM = 2.204623

kg = float(input('Enter weight in kilograms: '))
if kg >= 0:

convert kilograms to pounds and print result
else:

print('Invalid input! '
'Weight in kilograms must not be negative!')

So our program would perform the desired calculations if and only if
the weight in kilograms entered by the user were non-negative (that is,
greater than or equal to zero).

Here’s another example. Let’s say we’re writing a program that plays
the game evens and odds. This is a two-player game where one player
calls “even” or “odd”, and then the two players simultaneously reveal
zero, one, two, three, four or five fingers. Then the sum is calculated and
the caller wins if the sum agrees with their call.

In such a game, we’d want the user to enter an integer in the interval
[0, 5]. Here’s how we might validate this input:

fingers = int(input('Enter a number of fingers [0, 5]: '))
if fingers >= 0 and fingers <= 5:

Generate a random integer in the range [0, 5],
calculate sum, and report the winner.

else:
print('Invalid input!')

Admittedly, these aren’t satisfactory solutions. Usually, when a user en-
ters invalid data the program gives the user another chance, or chances,
until valid data are supplied. We’ll see how to do this soon.

Nevertheless, simple bounds checking is a good start!

Some string methods 141

Comprehension check
1. Can you use De Morgan’s Laws (see: Boolean expressions) to

rewrite the bounds checking above?

2. If we were to do this, would we be checking to see if fingers is in
the desired range or outside the desired range?

3. If your answer to 2 (above) was outside the desired range, how
would you need to modify the program?

8.7 Some string methods
Python provides us with many tools for manipulating strings. We won’t
introduce them all here, but instead we’ll demonstrate a few which we’ll
use in programming exercises, and then introduce more as we need them.

First, what is a string method? If you’ve ever programmed in Java or
C# or other OOP language, you may be familiar with methods. If not,
don’t fret, because the concept isn’t too difficult.

Strings are a type of object in Python. Consider what happens when
we ask Python what type the string “Mephistopheles” is.

>>> type('Mephistopheles')
<class 'str'>

What Python is telling us is that “Mephistopheles” is an object of type
str.

When the developers of Python defined the types str, int, float, bool,
etc. they created classes corresponding to these different types of objects.
We won’t cover any object-oriented programming in this book, but you
can think of a class as a blueprint for creating objects of a given type.
We instantiate an object by making an assignment, for example

n = 42

creates an object of type int, and

s = 'Cheese Shoppe'

creates an object of type str, and so on. The class definitions give Python
a blueprint for instantiating objects of these different types.

One of the things classes allow us to do is to define methods that are
part of the class definition and which are included with the objects along
with their data. Methods are nothing more than functions defined for a
class of objects which operate on the data of those objects.

Here’s an example. Let’s create a string object, s

>>> s = 'mephistopheles'

142 Branching and Boolean expressions

Now, just like we can access individual members of the math mod-
ule with the member (.) operator (for example, math.pi, math.sqrt(2),
math.sin(0.478), etc.) we can access string methods the same way!

For example, the capitalize() method can be called for any string
object, and it will return a copy of the string with the first character
capitalized (note: this does not modify the string, it just returns a copy
of the string).

>>> s = 'mephistopheles' # note: this is all lower case
>>> s.capitalize()
'Mephistopheles'

Here’s another method: upper() (you can guess what this does).

>>> s = 'mephistopheles' # note: this is all lower case
>>> s.upper()
'MEPHISTOPHELES'

Now what if we had a string in all upper case, but wanted it in lower
case?

>>> s = 'PLEASE STOP YELLING'
>>> s.lower()
'please stop yelling'

As you might imagine, these can come in handy, and there are many
more (take a peek at Built-in Types (https://docs.python.org/3/librar
y/stdtypes.html) and scroll down to String Methods if you’re curious).

It is important to keep in mind that these do not alter the string’s
value, they only return an altered copy of the string.

>>> s = 'PLEASE STOP YELLING'
>>> s.lower()
'please stop yelling'
>>> s
'PLEASE STOP YELLING'

If you want to use the result returned by these methods you may need
to assign the result to a new object or overwrite the value of the current
variable, thus:

>>> s = 'PLEASE STOP YELLING'
>>> s = s.lower()
>>> s
'please stop yelling'

This isn’t always necessary, but keep this in mind.

https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/library/stdtypes.html

Some string methods 143

Some applications
Let’s say we wanted to write a program that prompted the user to see
if they wish to continue. At some point in our code, we might have
something like this:

response = input('Do you wish to continue? Enter "y" '
'to continue or any other key to abort: ')

if response == 'y':
This is where we'd continue whatever we were doing

else:
This is where we'd abort

What would happen if the user were to enter upper case ‘Y’? Clearly the
user intends to continue, but the comparison

response == 'y'

would return False and the program would abort. That might make for
an unhappy user.

We could write

response = input('Do you wish to continue? Enter "y" '
'to continue or any other key to abort: ')

if response == 'y':
This is where we'd continue whatever we were doing

elif response == 'Y':
This is where we'd continue whatever we were doing

else:
This is where we'd abort

or

response = input('Do you wish to continue? Enter "y" '
'to continue or any other key to abort: ')

if response == 'y' or response == 'Y':
This is where we'd continue whatever we were doing

else:
This is where we'd abort

Instead, we could use lower() and simplify our code!

response = input('Do you wish to continue? Enter "y" to '
'continue or any other key to abort: ')

if response.lower() == 'y':
This is where we'd continue whatever we were doing

else:
This is where we'd abort

144 Branching and Boolean expressions

This code (above) behaves the same whether the user enters ‘y’ or ‘Y’,
because we convert to lower case before performing the comparison. This
is one example of an application for string methods.

Another might be dealing with users that have the CAPS LOCK key
on.

name = input('Please enter your name: ')
Now what if the user enters: 'EGBERT'?
We can fix that:
name = name.capitalize()
Now name is 'Egbert'

There are lots of uses.

8.8 Decision trees
We may represent a decision-making process diagrammatically with a de-
cision tree. Decision trees are commonly used for species identification.5

Here’s an example:

Figure 8.1: Decision tree for fruit

Here, we start on the left and move toward the right, making decisions
along the way. Notice that at each branching point we have two branches.

So, for example, to reach “watermelon, cantaloupe”, we make the
decisions: soft inside, small seeds, thick skin, and unsegmented. To reach

5If you’ve had a course in biology, you may have heard of a cladogram for
representing taxonomic relationships of organisms. A cladogram is a kind of decision
tree. If you’re curious, see: https://en.wikipedia.org/wiki/Cladogram and similar
applications.

https://en.wikipedia.org/wiki/Cladogram

Decision trees 145

“peach”, we’d have to have made the decisions: soft inside, pit or stone,
and fuzzy.

How do we encode these decision points? One way is to treat them as
yes or no questions. So if we ask “Is the fruit soft inside?” then we have
a yes or no answer. If the answer is “no”, then we know the fruit is not
soft inside and thus must be hard inside (like a walnut or almond).

Here’s a snippet of Python code, demonstrating a single question:

response = input('Is the fruit soft inside? y/n ')
if response == 'y':

we know the fruit is soft inside
...

else:
we know the fruit is hard inside
...

We can write a program that implements this decision tree by using
multiple, nested if statements.

"""
CS 1210
Decision tree for fruit identification
"""

response = input('Is the fruit soft inside? y/n ')
if response.lower() == 'y':

soft inside
response = input('Does it have small seeds? y/n ')
if response.lower() == 'y':

small seeds
response = input('Does it have a thin skin? y/n ')
if response.lower() == 'y':

thin skin
print("Tomato")

else:
thick skin
response = input('Is it segmented? y/n ')
if response.lower() == 'y':

segmented
print("Orange or lemon")

else:
unsegmented
print("Watermelon or cantaloupe")

else:
pit or stone
response = input('Is it fuzzy? y/n ')
if response.lower() == 'y':

segmented
print("Peach")

else:

146 Branching and Boolean expressions

unsegmented
print("Plum")

else:
hard inside
print("Walnut or almond")

Comprehension check
1. In the decision tree above, Figure 8.1, which decisions lead to plum?

(There are three.)

2. Revisit Section 8.4 and draw decision trees for the code examples
shown.

8.9 Exercises
Exercise 01
Evaluate the result of the following, given that we have:

a = True
b = False
c = True

Do these on paper first, then check your answers in the Python shell.

1. a or b and c
2. a and b or c
3. a and b and c
4. not a or not b or c
5. not (a and b)

Exercise 02
Evaluate the result of the following, given that we have:

a = 1
b = 'pencil'
c = 'pen'
d = 'crayon'

Do these on paper first, then check your answers in the Python shell.
Some of these may surprise you!

1. a == b
2. b > c
3. b > d or a < 5
4. a != c
5. d == 'rabbit'
6. c < d or b > d
7. a and b < d

Exercises 147

8. (a == b) and (b != c)
9. (a and b) and (b < c)

10. not (a and b and c and d)

Ask yourself, what does it mean for 'crayon' to be less than 'pencil'?
How would you interpret this? Ask yourself, what’s going on when an
expression like 0 or 'crayon' is evaluated?

Exercise 03
Complete the following if statements so that they print the correct mes-
sage. Notice that there are blank spaces in the code that you should
complete. You may assume we have three variables, with string values
assigned: cheese, blankets, toast, for example,

cheese = 'runny'

1. Cheese is smelly and blankets are warm!

if cheese == 'smelly' and :
print('Cheese is smelly and blankets are warm!')

2. Blankets are warm and toast is not pickled. Hint: use not or !=

if blankets :
print('Blankets are warm but toast is not pickled.')

3. Toast is yummy and so is cheese!

if :
print('Toast is yummy and so is cheese!')

4. Either toast is yummy or toast is green (or maybe both).

if :
print('Either toast is yummy or toast is green '

'(or maybe both).')

148 Branching and Boolean expressions

Exercise 04
What is printed at the console for each of the following?

1.

>>> 'HELLO'.capitalize()

2.

>>> s = 'HoverCraft'
>>> s.lower()

3.

>>> s = 'wATer'.lower()
>>> s

Exercise 05
If we have only two possible outcomes in a decision tree, and decisions
are binary, then our tree has only one branching point. If we have four
possible outcomes, then our tree must have three branching points.

a. If we have eight possible outcomes in a decision tree, and decisions
are binary, how many branching points must we have?

b. What about 16?

c. Can you find a formula that calculates the number of branching
points given the number of outcomes? (OK if you can’t, so don’t
sweat it.)

Chapter 9

Structure, development, and
testing

It’s important to be methodical when programming, and in this chapter
we’ll see how best to structure your Python code. Following this structure
takes much of the guesswork out of programming. Many questions about
where certain elements of your program belong are already answered for
you. What’s presented here is based on common (indeed nearly universal)
practice for professionally written code.

We’ll also learn a little bit about how to proceed when writing code
(that is, in small, incremental steps), how to test your code, how to use
assertions, and what to do about the inevitable bugs.

Learning objectives
• You will learn about incremental development, and how to use

comments as “scaffolding” for your code.
• You will learn how to organize and structure your code.
• You will understand how Python handles the main entry point of

your program, and how Python distinguishes between modules that
are imported and modules that are to be executed.

• You will be able to write code with functions that can be imported
and used independently of any driver code.

• You will understand how to test your code, and when to use asser-
tions in your code.

Terms and Python keywords introduced
• assert (Python keyword) and assertions
• AssertionError
• bug
• driver code
• dunder
• entry point and top-level code environment
• incremental development
• namespace
• rubberducking

149

150 Structure, development, and testing

9.1 main the Python way
So far, we’ve followed this general outline:

"""
A program which prompts the user for a radius of a circle,
r, and calculates and reports the circumference.
"""

import math

def circumference(r_):
return 2 * math.pi * r_

r = float(input('Enter a non-negative real number: '))
if r >= 0:

c = circumference(r)
print(f'The circumference of a circle of radius '

f'{r:,.3f} is {c:,.3f}.')
else:

print(f'I asked for a non-negative number, and '
f'{r} is negative!')

This is conventional and follows good coding style (PEP 8).
You may have seen something like this:

"""
A program which prompts the user for a radius of a circle,
r, and calculates and reports the circumference.
"""

import math

def circumference(r_):
return 2 * math.pi * r_

def main():
r = float(input('Enter a non-negative real number: '))
if r >= 0:

c = circumference(r)
print(f'The circumference of a circle of radius '

f'{r:,.3f} is {c:,.3f}.')
else:

print(f'I asked for a non-negative number, and '
f'{r} is negative!')

main()

While this is not syntactically incorrect, it’s not really the Python way
either.

main the Python way 151

Some textbooks use this, and there are abundant examples on the
internet, perhaps attempting to make Python code look more similar to
languages like C or Java (in the case of Java, an executable program
must implement main()). But again, this is not the Python way.

Here’s how things work in Python. Python has what is called the top-
level code environment. When a program is executed in this environment
(which is what happens when you run your code within your IDE or
from the command line), there’s a special variable __name__ which is
automatically set to the value '__main__'.1 '__main__' is the name of
the environment in which top-level code is run.

So if we wish to distinguish portions of our code which are auto-
matically run when executed (sometimes called driver code) from other
portions of our code (like imports and the functions we define), we do it
thus:

"""
A program which prompts the user for a radius of a circle,
r, and calculates and reports the circumference.
"""

import math

def circumference(r_):
return 2 * math.pi * r_

if __name__ == '__main__':

This code will only be executed if this module
(program) is run. It will *not* be executed if
this module is imported.

r = float(input('Enter a non-negative real number: '))
if r >= 0:

c = circumference(r)
print(f'The circumference of a circle of radius '

f'{r:,.3f} is {c:,.3f}.')
else:

print(f'I asked for a non-negative number, and '
f'{r} is negative!')

Let’s say we saved this file as circle.py. If we were to run this program
from our IDE or from the command line with

$ python circle.py

Python would read the file, would see that we’re executing it, and thus
would set __name__ equal to '__main__'. Then, after reading the definition
of the function circumference(r_), it would reach the if statement,

1Some other programming languages refer to the top-level as the entry point.
'__main__' is the name of a Python program’s entry point.

152 Structure, development, and testing

if __name__ == '__main__':

This condition evaluates to True, and the code nested within this if
statement would be executed. So it would prompt the user for a radius,
and then check for valid input and return an appropriate response.

Another simple demonstration
Consider this Python program

"""
tlce.py (top-level code environment)
Another program to demonstrate the significance
of __name__ and __main__.
"""

print(__name__)

if __name__ == '__main__':
print("Hello World!")

Copy this code and save it as tlce.py (short for top-level code environ-
ment). Then, try running this program from within your IDE or from
the command line. What will it print when you run it? It should print

__main__
Hello World!

So, you see, when we run a program in Python, Python sets the value
of the variable __name__ to the string '__main__', and then, when the
program performs the comparison __name__ == '__main__' this evaluates
to True, and the code within the if is executed.

What happens if we import our module in another
program?
Now write another program which imports this module (formally we refer
to Python programs as modules).

In the same directory where you have tlce.py, create a new file

"""
A program which imports tlce (from the previous example).
"""

import tlce

Save this as use_tlce.py and then run it. What is printed? This program
should print

main the Python way 153

tlce

So, if we import tlce then Python sets __name__ equal to 'tlce', and the
body of the if is never executed.

Why would we do this? One reason is that we can write functions
in one module, and import the module without executing any of the
module’s code, but make the functions available to us. Sound familiar?
It should. Consider what happens when we import the math module.
Nothing is executed, but now we have math.pi, math.sqrt(), math.sin(),
etc. available to us.

A complete example
Earlier we created a program which, given some radius, 𝑟, provided by the
user, calculated the circumference, diameter, surface area, and volume of
a sphere of radius 𝑟. Here it is, with some minor modifications, notably
the addition of the check on the value of __name__.

"""
Sphere calculator (sphere.py)

Prompts the user for some radius, r, and then prints
the circumference, diameter, surface area, and volume
of a sphere with this radius.
"""

import math

def circumference(r_):
return 2 * math.pi * r_

def diameter(r_):
return 2 * r_

def surface_area(r_):
return 4 * math.pi * r_ ** 2

def volume(r_):
return 4 / 3 * math.pi * r_ ** 3

if __name__ == '__main__':
r = float(input("Enter a radius >= 0.0: "))
if r < 0:

print("Invalid input")
else:

print(f"The diameter is "
f"{diameter(r):0,.3f} units.")

print(f"The circumference is "
f"{circumference(r):0,.3f} units.")

print(f"The surface area is "

154 Structure, development, and testing

f"{surface_area(r):0,.3f} units squared.")
print(f"The volume is "

f"{volume(r):0,.3f} units cubed.")

Now we have a program that prompts the user for some radius, 𝑟, and
uses some convenient functions to calculate these other values for a
sphere. But it’s not a stretch to see that we might want to use these
functions somewhere else!

Let’s say we’re manufacturing yoga balls—those inflatable balls that
people use for certain exercises requiring balance. We’d want to know
how much plastic we’d need to manufacture some number of balls. Say
our yoga balls are 33 centimeters in radius when inflated, and that we
want the thickness of the balls to be 0.1 centimeter.

In order to complete this calculation, we’ll need to calculate volume.
Why reinvent the wheel? We’ve already written a function to do this!

Let’s import sphere.py and use the function provided by this module.

"""
Yoga ball material requirements
"""

import sphere
sphere.py must be in the same directory for this to work

RADIUS_CM = 33
THICKNESS_CM = 0.1
VINYL_G_PER_CC = 0.95
G_PER_KG = 1000

if __name__ == '__main__':
balls = int(input("How many balls do you want "

"to manufacture this month? "))
outer = sphere.volume(RADIUS_CM)
inner = sphere.volume(RADIUS_CM - THICKNESS_CM)
material_per_ball = outer - inner
total_material = balls * material_per_ball
total_material_by_weight

= total_material / VINYL_G_PER_CC / G_PER_KG

print(f"To make {balls} balls, you will need "
f"{total_material:,.1f} cc of vinyl.")

print(f"Order at least "
f"{total_material_by_weight:,.1f} "
f"kg of vinyl to meet material requirements.")

See? We’ve imported sphere so we can use its functions. When we import
sphere, __name__ (for sphere) takes on the value sphere so the code under
if __name__ == '__main__' isn’t executed!

This allows us to have our cake (a program that calculates diameter,
circumference, surface area, and volume of a sphere) and eat it too (by

Program structure 155

allowing imports and code reuse)! How cool is that?

What’s up with the funny names?
These funny names __name__ and '__main__' are called dunders. Dunder
is short for double underscore. This is a naming convention that Python
uses to set special variables, methods, and functions apart from the typ-
ical names programmers use for variables, methods, and functions they
define.

9.2 Program structure
There is an order to things, and programs are no different. Your Python
code should follow this general layout:

1. docstring
2. imports (if any)
3. constants (if any)
4. function definitions (if any)

… and then, nested under if __name__ == '__main__':, all the rest of
your code. Here’s an example:

"""
A docstring, delimited by triple double-quotes,
which includes your name and a brief description
of your program.
"""

import foo # imports (if any)

MEGACYCLES_PER_FROMBULATION = 133 # constants (if any)

Functions which you define...
def f(x_):

return 2 * x_ + 1

def g(x_):
return (x_ - 1) ** 2

The rest of your code...
if __name__ == '__main__':

x = float(input("Enter a real number: "))
print(f"Answer: {f(g(x))

/ MEGACYCLES_PER_FROMBULATION} megacycles!")

9.3 Iterative and incremental development
Incremental development is a process whereby we build our program
incrementally—often in small steps or by components. This is a struc-

156 Structure, development, and testing

tured, step-by-step approach to writing software. This approach has long
been used to make the process of building complex programs more reli-
able. Even if you’re not undertaking a large-scale software development
project, this approach can be fruitful. Moreover, decomposing problems
into small portions or components can help reduce the complexity of the
task you’re working on at any given time.

Here’s an example. Let’s say we want to write a program that prompts
the user for mass and velocity and calculates the resulting kinetic energy.
If you haven’t had a course in physics before, don’t sweat it—the formula
is rather simple.

𝐾𝑒 = 1
2𝑚𝑣2

where 𝐾𝑒 is kinetic energy in Joules, 𝑚 is mass in kg, and 𝑣 is velocity
in m / s.

How would you go about this incrementally? The first step might be
to sketch out what needs to happen with comments.2

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and save result
Step 2: Prompt user for velocity in m / s and save result
Step 3: Calculate kinetic energy in Joules using formula
Step 4: Display pretty result

That’s a start, but then you remember that Python’s input() function
returns a string, and thus you need to convert these strings to floats.
You decide that before you start writing code you’ll add this to your
comments, so you don’t forget.

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert input
to float and save result
Step 2: Prompt user for velocity in m / s and convert
input to float and save result
Step 3: Calculate kinetic energy in Joules using formula
Step 4: Display pretty result

2Here we’ve excluded if __name__ == __main__: to avoid clutter in presentation.

Iterative and incremental development 157

Now you decide you’re ready to start coding, so you start with step
1.

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert input
to float and save result
mass = float(input('Enter mass in kg: '))
print(mass)
Step 2: Prompt user for velocity in m / s and convert
input to float save result
Step 3: Calculate kinetic energy in Joules using formula
Step 4: Display pretty result

Notice the comments are left intact and there’s a print statement added
to verify mass is correctly stored in mass. Now you run your code—yes,
it’s incomplete, but you decide to run it to confirm that the first step is
correctly implemented.

Enter mass in kg: 72.1
72.1

So that works as expected. Now you decide you can move on to step 2.

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert
input to float and save result
mass = float(input('Enter mass in kg: '))
print(mass)
Step 2: Prompt user for velocity in m / s and
convert input to float save result
velocity = float(input('Enter velocity in m / s: '))
print(velocity)
Step 3: Calculate kinetic energy in Joules using formula
Step 4: Display pretty result

Now when you run your code, this is the result:

Enter mass in kg: 97.13
97.13

158 Structure, development, and testing

Enter velocity in m / s: 14.5
14.5

Again, so far so good. Now it’s time to perform the calculation of kinetic
energy.

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert
input to float and save result
mass = float(input('Enter mass in kg: '))
print(mass)
Step 2: Prompt user for velocity in m / s and
convert input to float save result
velocity = float(input('Enter velocity in m / s: '))
print(velocity)
Step 3: Calculate kinetic energy in Joules using formula
kinetic_energy = 0.5 * mass * velocity ** 2
print(kinetic_energy)
Step 4: Display pretty result

You run your code again, testing different values.

Enter mass in kg: 22.7
22.7
Enter velocity in m / s: 30.1
30.1
10283.213500000002

At this point, you decide that getting the input is working OK, so
you remove the print statements following mass and velocity. Then you
decide to focus on printing a pretty result. You know you want to use
format specifiers, but you don’t want to fuss with that quite yet, so you
start with something simple (but not very pretty).

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert
input to float and save result
mass = float(input('Enter mass in kg: '))
Step 2: Prompt user for velocity in m / s and

Iterative and incremental development 159

convert input to float save result
velocity = float(input('Enter velocity in m / s: '))
Step 3: Calculate kinetic energy in Joules using formula
kinetic_energy = 0.5 * mass * velocity ** 2
Step 4: Display pretty result
print(f'Mass = {mass} kg')
print(f'Velocity = {velocity} m / s')
print(f'Kinetic energy = {energy} Joules')

Now you run this and get an error.

Enter mass in kg: 17.92
Enter velocity in m / s: 25.0
Traceback (most recent call last):
File "/blah/blah/kinetic_energy.py", line 10, in <module>

print(f'Kinetic energy = {energy} Joules')
NameError: name 'energy' is not defined

You realize that you typed energy when you should have used
kinetic_energy. That’s not hard to fix, and since you know the other
code is working OK you don’t need to touch it.

Here’s the fix:

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert input
to float and save result
mass = float(input('Enter mass in kg: '))
Step 2: Prompt user for velocity in m / s and convert
input to float save result
velocity = float(input('Enter velocity in m / s: '))
Step 3: Calculate kinetic energy in Joules using formula
kinetic_energy = 0.5 * mass * velocity ** 2
Step 4: Display pretty result
print(f'Mass = {mass} kg')
print(f'velocity = {velocity} m / s')
print(f'kinetic energy = {kinetic_energy} Joules')

Now this runs without error.

Enter mass in kg: 22.901
Enter velocity in m / s: 13.33
Mass = 22.901 kg
Velocity = 13.33 m / s
Kinetic energy = 2034.6267494499998 Joules

160 Structure, development, and testing

The last step is to add format specifiers for pretty printing, but since
everything else is working OK, the only thing you need to focus on are
the format specifiers. Everything else is working!

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert input
to float and save result
mass = float(input('Enter mass in kg: '))
Step 2: Prompt user for velocity in m / s and convert
input to float save result
velocity = float(input('Enter velocity in m / s: '))
Step 3: Calculate kinetic energy in Joules using formula
kinetic_energy = 0.5 * mass * velocity ** 2
Step 4: Display pretty result
print(f'Mass = {mass:.3f} kg')
print(f'velocity = {velocity:.3f} m / s')
print(f'kinetic energy = {kinetic_energy:.3f} Joules')

You test your code:

Enter mass in kg: 100
Enter velocity in m / s: 20
Mass = 100.000 kg
Velocity = 20.000 m / s
Kinetic energy = 20000.000 Joules

You decide that’s OK, but you’d rather have comma separators in
your output, so you modify the format specifiers.

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

Step 1: Prompt user for mass in kg and convert input
to float and save result
mass = float(input('Enter mass in kg: '))
Step 2: Prompt user for velocity in m / s and convert
input to float save result
velocity = float(input('Enter velocity in m / s: '))
Step 3: Calculate kinetic energy in Joules using formula
kinetic_energy = 0.5 * mass * velocity ** 2
Step 4: Display pretty result
print(f'Mass = {mass:,.3f} kg')

Testing your code 161

print(f'velocity = {velocity:,.3f} m / s')
print(f'kinetic energy = {kinetic_energy:,.3f} Joules')

You test one more time and get a nice output.

Enter mass in kg: 72.1
Enter velocity in m / s: 19.5
Mass = 72.100 kg
Velocity = 19.500 m / s
Kinetic energy = 13,708.012 Joules

Looks great!
Now we can remove the comments we used as scaffolding, and we

finish with:

"""
Kinetic Energy Calculator
Egbert Porcupine <egbert.porcupine@uvm.edu>
CS 1210
"""

mass = float(input('Enter mass in kg: '))
velocity = float(input('Enter velocity in m / s: '))
kinetic_energy = 0.5 * mass * velocity ** 2
print(f'Mass = {mass:,.3f} kg')
print(f'velocity = {velocity:,.3f} m / s')
print(f'kinetic energy = {kinetic_energy:,.3f} Joules')

So now you’ve seen how to do incremental development.3 Notice that
we did not try to solve the entire problem all at once. We started with
comments as placeholder / reminders, and then built up the program one
step at a time, testing along the way. Using this approach can make the
whole process easier by decomposing the problem into small, manageable,
bite-sized (or should I say “byte-sized”?) chunks. That’s incremental de-
velopment.

9.4 Testing your code
It’s important to test your code. In fact one famous dictum of program-
ming is:

If it hasn’t been tested, it’s broken.

When writing code, try to anticipate odd or non-conforming input,
and then test your program to see how it handles such input.

3If you’re curious about how the pros do iterative and incremental development,
see the Wikipedia article on iterative and incremental development: https://en.wik
ipedia.org/wiki/Iterative_and_incremental_development

https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Iterative_and_incremental_development

162 Structure, development, and testing

If your code has multiple branches, it’s probably a good idea to test
each branch. Obviously, with larger programs this could get unwieldy,
but for small programs with few branches, it’s not unreasonable to try
each branch.

Some examples
Let’s say we had written a program that is intended to take pressure in
pounds per square inch (psi) and convert this to bars. A bar is a unit of
pressure and 1 bar is equivalent to 14.503773773 psi.

Without looking at the code, let’s test our program. Here are some
values that represent reasonable inputs to the program.

input (in psi) expected output (bars) actual output (bars)
0 0

14.503773773 1.0
100.0 ~ 6.894757293

Here’s our first test run.

Enter pressure in psi: 0
Traceback (most recent call last):

File "/.../pressure.py", line 15, in <module>
bars = psi_to_bars(psi)

File "/.../pressure.py", line 8, in psi_to_bars
return PSI_PER_BAR / p

TypeError: unsupported operand type(s) for /: 'float' and 'str'

Oh dear! Already we have a problem. Looking at the last line of the error
message we see

TypeError: unsupported operand type(s) for /: 'float' and 'str'

What went wrong?
Obviously we’re trying to do arithmetic—division—where one

operand is a float and the other is a str. That’s not allowed, hence
the type error.

When we give this a little thought, we realize it’s likely we didn’t
convert the user input to a float before attempting the calculation (re-
member, the input() function always returns a string).

We go back to our code and fix it so that the string we get from input()
is converted to a float using the float constructor, float(). Having made
this change, let’s try the program again.

Testing your code 163

Enter pressure in psi: 0
Traceback (most recent call last):
File "/.../pressure.py", line 15, in <module>

bars = psi_to_bars(psi)
File "/.../pressure.py", line 8, in psi_to_bars

return PSI_PER_BAR / p
ZeroDivisionError: float division by zero

Now we have a different error:

ZeroDivisionError: float division by zero

How could this have happened? Surely if pressure in psi is zero, then
pressure in bars should also be zero (as in a perfect vacuum).

When we look at the code (you can see the offending line in the
traceback above), we see that instead of taking the value in psi and
dividing by the number of psi per bar, we’ve got our operands in the
wrong order. Clearly we need to divide psi by psi per bar to get the
correct result. Again you can see from the traceback, above, that there’s
a constant PSI_PER_BAR, so we’ll just reverse the operands. This has the
added benefit of having a non-zero constant in the denominator, so after
this change, this operation can never result in a ZeroDivisionError ever
again.

Now let’s try it again.

Enter pressure in psi: 0
0.0 psi is equivalent to 0.0 bars.

That works! So far, so good.
Now let’s try with a different value. We know, from the definition of

bar that one bar is equivalent to 14.503773773 psi. Therefore, if we enter
14.503773773 for psi, the program should report that this is equivalent
to 1.0 bar.

Enter pressure in psi: 14.503773773
14.503773773 psi is equivalent to 1.0 bars.

Brilliant.
Let’s try a different value. How about 100? You can see in the table

above that 100 psi is approximately equivalent to ~6.894757293 bars.

Enter pressure in psi: 100
100.0 psi is equivalent to 6.894757293178307 bars.

This looks correct, though we can see now that we’re displaying more
digits to the right of the decimal point than are useful.

Let’s say we went back to our code and added format specifiers to
that both psi and bars are displayed to four decimal places of precision.

164 Structure, development, and testing

Enter pressure in psi: 100
100.0000 psi is equivalent to 6.8948 bars.

This looks good.
Returning to our table, and filling in the actual values, now we have

input (in psi) expected output (bars) actual output (bars)
0 0.0 0.0000

14.503773773 1.0 1.0000
100.0 ~ 6.894757293 6.8948

All our observed, actual outputs agree with our expected outputs.
What about negative values for pressure? Yes, there are cases where a

negative pressure value makes sense. Take, for example, an isolation room
for biomedical research. The air pressure in the isolation room should be
lower than pressure in the outside hallways or adjoining rooms. In this
way, when the door to an isolation room is opened, air will flow into the
room, not out of it. This helps prevent contamination of uncontrolled
outside environments. It’s common to express the difference in pressure
between the isolation room and the outside hallway as a negative value.

Does our program handle such values? Let’s expand our table:

input (in psi) expected output (bars) actual output (bars)
0 0.0 0.0000

14.503773773 1.0 1.0000
100.0 ~ 6.894757293 6.8948
-0.01 ~ -0.000689476 ??

Does our program handle this correctly?

Enter pressure in psi: -0.01
-0.0100 psi is equivalent to -0.0007 bars.

Again, this looks OK.
Now let’s try to break our program to test its limits. Let’s try some

large values. The atmospheric pressure on the surface of Venus is 1334
psi. We’d expect a result in bars of approximately 91.9761 bars. The
pressure at the bottom of the Mariana Trench in the Pacific Ocean is
15,750 psi, or roughly 1,086 bars.

Testing your code 165

input (in psi) expected output (bars) actual output (bars)
0 0.0 0.0000

14.503773773 1.0 1.0000
100.0 ~ 6.894757293 6.8948
-0.01 ~ -0.000689476 0.0007
1334 ~ 91.9761 ??

15,750 ~ 1086 ??

Let’s test:

Enter pressure in psi: 1334
1334.0000 psi is equivalent to 91.9761 bars.

This one passes, but what about the next one (with the string contain-
ing the comma)? Will the conversion of the string '15,750' (notice the
comma) be converted correctly to a float? Alas, this fails:

Traceback (most recent call last):
File "/.../pressure.py", line 13, in <module>

psi = float(input("Enter pressure in psi: "))
ValueError: could not convert string to float: '15,750'

Later, we’ll learn how to create a modified copy of such a string with
the commas removed, but for now let it suffice to say this can be fixed.
Notice however, that if we hadn’t checked this large value, which could
reasonably be entered by a human user with the comma as shown, we
might not have realized that this defect in our code existed! Always test
with as many ways the user might enter data as you can think of!

With that fix in place, all is well.

Enter pressure in psi: 15,750
15750.0000 psi is equivalent to 1085.9243 bars.

By testing these larger values, we see that it might make sense to
format the output to use commas as thousands separators for improved
readability. Again, we might not have noticed this if we hadn’t tested
larger values. To fix this, we just change the format specifiers in our code.

Enter pressure in psi: 15,750
15,750.0000 psi is equivalent to 1,085.9243 bars.

Splendid.
This prompts another thought: what if the user entered psi in scien-

tific notation like 1E3 for 1,000? It turns out that the float constructor
handles inputs like this—but it never hurts to check!

Notice that by testing, we’ve been able to learn quite a bit about our
code without actually reading the code! In fact, it’s often the case that
the job of writing tests for code falls to developers who aren’t the ones

166 Structure, development, and testing

writing the code that’s being tested! One team of developers writes the
code, a different team writes the tests for the code.

The important things we’ve learned here are:

• Work out in advance of testing (by using a calculator, hand calcu-
lation, or other method) what the expected output of your program
should be on any given input. Then you can compare the expected
value with the actual value and thus identify any discrepancies.

• Test your code with a wide range of values. In cases where inputs
are numeric, test with extreme values.

• Don’t forget how humans might enter input values. Different users
might enter 1000 in different ways: 1000, 1000.0000, 1E3, 1,000,
1,000.0, etc. Equivalent values for inputs should always yield equiv-
alent outputs!

Another example: grams to moles
If you’ve ever taken a chemistry course, you’ve converted grams to moles.
A mole is a unit which measures quantity of a substance. One mole is
equivalent to 6.02214076×1023 elementary entities, where an elementary
entity may be an atom, an ion, a molecule, etc. depending on context.
For example, a reaction might yield so many grams of some substance,
and by converting to moles, we know exactly how many entities this
represents. In order to convert moles to grams, one needs the mass of
the entities in question.

Here’s an example. Our reaction has produced 75 grams of water, H2O.
Each water molecule contains two hydrogen atoms and one oxygen atom.
The atomic mass of hydrogen is 1.008 grams per mole. The atomic mass
of oxygen is 15.999 grams per mole. Accordingly, the molecular mass of
one molecule of H2O is

2 × 1.008 𝑔/mole + 1 × 15.999 𝑔/mole = 18.015 𝑔/mole.
Our program will require two inputs: grams, and grams per mole (for

the substance in question). Our program should return the number of
moles.

Let’s build a table of inputs and outputs we can use to test our pro-
gram.

grams
grams per

mole
expected output

(moles)
actual output

(moles)
0 any 0

75 18.015 ~ 4.16319 E0
245 16.043 ~ 1.527240 E1

3.544 314.469 ~ 1.12698 E-2
1,000 100.087 ~ 9.99130 E0

Let’s test our program:

Testing your code 167

How many grams of stuff have you? 75
What is the atomic weight of your stuff? 18.015
You have 4.1632E+00 moles of stuff!

That checks out.

How many grams of stuff have you? 245
What is the atomic weight of your stuff? 16.043
You have 1.5271E+01 moles of stuff!

Keep checking…

How many grams of stuff have you? 3.544
What is the atomic weight of your stuff? 314.469
You have 1.1270E-02 moles of stuff!

Still good. Keep checking…

How many grams of stuff have you? 1,000
Traceback (most recent call last):
File "/.../moles.py", line 9, in <module>

grams = float(input("How many grams of stuff have you? "))
ValueError: could not convert string to float: '1,000'

Oops! This is the same problem we saw earlier: the float constructor
doesn’t handle numeric strings containing commas. Let’s assume we’ve
applied a similar fix and then test again.

How many grams of stuff have you? 1,000
What is the atomic weight of your stuff? 100.087
You have 9.9913E+00 moles of stuff!

Yay! Success!
Now, what happens if we were to test with negative values for either

grams or atomic weight?

How many grams of stuff have you? -500
What is the atomic weight of your stuff? 42
You have -1.1905E+01 moles of stuff!

Nonsense! Ideally, our program should not accept negative values for
grams, and should not accept negative values or zero for atomic weight.

In any event, you see now how useful testing a range of values can be.
Don’t let yourself be fooled into thinking your program is defect-free if
you’ve not tested it with a sufficient variety of inputs.

168 Structure, development, and testing

9.5 The origin of the term “bug”
So where do we get the word “bug” anyhow? Alas, the origin of the term
is lost. However, in 1947, the renowned computer pioneer Grace Murray
Hopper was working on the Harvard Mark I computer, and a program
was misbehaving.4

Figure 9.1: Grace Murray Hopper. Source: The Grace Murray Hop-
per Collection, Archives Center, National Museum of American History
(image is in the public domain)

After reviewing the code and finding no error, she investigated further
and found a moth in one of the computer’s relays (remember this was
back in the days when a computer filled an entire large room). The moth
was removed, and taped into Hopper’s lab notebook.

4Judging from Hopper’s notebook (9 September 1947), the misbehaving program
was a “multi-adder test”. It appears they were running the machine through a se-
quence of tests—for example, tests for certain trigonometric functions took place
earlier that day. At least one had failed and some relays (hardware components)
were replaced. The multi-adder test was started at 3:25 PM (Hopper uses military
time in the notebook: “1525”), and twenty minutes later, the moth was taped into
the notebook. It’s not clear how the problem became manifest, but someone went
looking at the hardware and found the moth.

The origin of the term “bug” 169

Figure 9.2: A page from Hopper’s notebook containing the first “bug”.
Source: US Naval Historical Center Online Library (image is in public
domain)

In interviews, Hopper said that after this discovery, whenever something
was wrong she and her team would say “There must be a bug.”

Not everyone likes the term “bug.” For example, the famously grumpy
Edsger Dijkstra thought that calling errors “bugs” was intellectually dis-
honest. He made this point in an essay with the remarkable title “On
the cruelty of really teaching computing science.”5

We could, for instance, begin with cleaning up our language
by no longer calling a bug a bug but by calling it an error. It is
much more honest because it squarely puts the blame where it
belongs, viz. with the programmer who made the error. The
animistic metaphor of the bug that maliciously sneaked in
while the programmer was not looking is intellectually dis-
honest as it disguises that the error is the programmer’s own
creation.

5Edsger Dijkstra, 1988, “On the cruelty of really teaching computing science”.
This essay is recommended. See the entry in the Edsger Dijkstra archive hosted by
the University of Texas at Austin: https://www.cs.utexas.edu/~EWD/transcripti
ons/EWD10xx/EWD1036.html

https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD10xx/EWD1036.html

170 Structure, development, and testing

Figure 9.3: Edsger Dijkstra. Source: University of Texas at Austin,
under a Creative Commons license

Despite Dijkstra’s remonstrances, the term stuck. So now we have “bugs.”
Bugs are, of course, inevitable. What’s important is how we strive to

avoid them and how we fix them when we find them.

9.6 Using assertions to test your code
Many languages, Python included, allow for assertions or assert state-
ments. These are used to verify things you believe should be true about
some condition or result. By making an assertion, you’re saying “I be-
lieve 𝑥 to be true”, whatever 𝑥 might be. Assertions are a powerful tool
for verifying that a function or program actually does what you expect
it to do.

Python provides a keyword, assert which can be used in assert state-
ments. Here are some examples:

Let’s say you have a function which takes a list of items for some
purchase and applies sales tax. Whatever the subtotal might be, we know
that the sales tax must be greater than or equal to zero. So we write an
assertion:

sales_tax = calc_sales_tax(items)
assert sales_tax >= 0

If sales_tax is ever negative (which would be unexpected), this state-
ment would raise an AssertionError, informing you that something you
believed to be true, was not, in fact, true. This is roughly equivalent to

if sales_tax < 0:
raise AssertionError

but is more concise and readable.

Using assertions to test your code 171

Notice that if the assertion holds, no exception is raised, and the
execution of your code continues uninterrupted.

Here’s another example:

def calc_hypotenuse(a, b):
"""Given two legs of a right triangle, return the
length of the hypotenuse. """
assert a >= 0
assert b >= 0

return math.sqrt(a ** 2 + b ** 2)

What’s going on here? This isn’t data validation. Rather, we’re docu-
menting conditions that must hold for the function to return a valid
result, and we ensure that the program will fail if these conditions aren’t
met. We could have a degenerate triangle, where one or both legs have
length zero, but it cannot be the case that either leg has negative length.
This approach has the added benefit of reminding the programmer what
conditions must hold in order to ensure correct behavior.

Judicious use of assertions can help you write correct, robust code.

Adding friendly messages
Python’s assert allows you to provide a custom message in the event of
an AssertionError. The syntax is simple,

assert 1 + 1 == 2, "Something is horribly wrong!"

Some caveats
It’s important to understand that assert is a Python keyword and not
the name of a built-in function. This is correct:

assert 0.0 <= x <= 1.0, "x must be in [0.0, 1.0]"

but this is not

assert(0.0 <= x <= 1.0, "x must be in [0.0, 1.0]")

Why? This will treat the tuple

(0.0 <= x <= 1.0, "x must be in [0.0, 1.0]")

as what is being asserted. But non-empty tuples are truthy, and so this
will never result in an AssertionError, no matter what the value of x!

Let’s test it

172 Structure, development, and testing

>>> x = -42
>>> assert(0.0 <= x <= 1.0, "x must be in [0.0, 1.0]")
<stdin>:1: SyntaxWarning: assertion is always true,

perhaps remove parentheses?
>>>

However, this works as intended

>>> x = -42
>>> assert 0.0 <= x <= 1.0, "x must be in [0.0, 1.0]"
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError: x must be in [0.0, 1.0]
>>>

and if x is in the indicated interval, all is well.

>>> x = 0.42
>>> assert 0.0 <= x <= 1.0, "x must be in [0.0, 1.0]"
>>>

(Notice the >>> at the end of the snippet above, indicating that the
assertion has passed and is thus silent.)

You should try adding assertions to your code. In fact, the NASA/JPL
Laboratory for Reliable Software published a set of guidelines for produc-
ing reliable code, and one of these is “Use a minimum of two runtime
assertions per function.”6

9.7 Rubberducking
“Rubberducking”? What on Earth is “rubberducking”? Don’t laugh: rub-
berducking is one of the most powerful debugging tools in the known
universe! Many programmers keep a little rubber duck handy on their
desk, in case of debugging emergencies.

Here’s how it works. If you get stuck, and cannot solve a particular
problem or cannot fix a pesky bug you talk to the duck. Now, rubber
ducks aren’t terribly sophisticated, so you have to explain things to them
in the simplest possible terms. Explain your problem to the duck using
as little computer jargon as you can. Talk to your duck as if it were an
intelligent five-year-old. You’d be amazed at how many problems can be
solved this way!

Why does it work?
First, by talking to your duck, you step outside your code for a while.

You’re talking about your code without having to type at the keyboard,
and without getting bogged down in the details of syntax. You’re talking
about what you think your code should be doing.

Second, your duck will never judge you. It will remain silent while
you do your best to explain. Ducks are amazing listeners!

6G.J. Holzmann, 2006, “The Power of 10: Rules for Developing Safety-Critical
Code”, IEEE Computer, 39(6). doi:10.1109/MC.2006.212.

Exceptions 173

It’s very often the case that while you’re explaining your troubles to
the duck, or describing what you think your code should be doing, that
you reach a moment of realization. By talking through the problem you
arrive at a solution or you recognize where you went wrong.

What if I don’t have a rubber duck?
That’s OK. Many other things can stand in for a duck if need be. Do
you have a stuffed animal? a figurine of any kind? a photograph of a
friend? a roommate with noise-cancelling headphones? Any of these can
be substituted for a duck if need be.

The important thing is that you take your hands off the keyboard,
and maybe even look away from your code, and describe your problem
in simple terms.

Trust the process! It works!

9.8 Exceptions

AssertionError

As we’ve seen, if an assertion passes, code execution continues normally.
However, if an assertion fails, an AssertionError is raised. This indicates
that what has been asserted has evaluated to False.

If you write an assertion, and when you test your code an
AssertionError is raised, then you should do two things:

1. Make sure that the assertion you’ve written is correct. That is, you
are asserting some condition is true when it should, in fact, be true.

2. If you’ve verified that your assertion statement(s) are correct, and
an AssertionError continues to be raised, then it’s time to debug
your code. Continue updating and testing until the issue is resolved.

9.9 Exercises
Exercise 01
Arrange the following code and add any missing elements so that it
follows the stated guidelines for program structure (as per section 9.2):

x = float(input("Enter a value for x: "))

def square(x_):
return x_ * x_

x_sqrd = square(x)
print(f"{x} squared is {x_sqrd}.")

174 Structure, development, and testing

Exercise 02
Write a complete program which prompts the user for two integers (one
at a time) and then prints the sum of the integers. Be sure to follow the
stated guidelines for program structure.

Exercise 03
Egbert has written a function which takes two arguments, both represent-
ing angles in degrees. The function returns the sum of the two degrees,
modulo 360.

Here’s an example of one test of this function:

>>> sum_angles(180, 270)
90.0

What other values might you use to test such a function? For each
pair of values you choose, give the expected output of the function. (See
section 9.3)

Exercise 04
Consider this module (program):

"""
A simple program
"""

def cube(x_):
return x_ ** 3

Test function to make sure it works
as intended

assert cube(3) == 27
assert cube(0) == 0
assert cube(-1) == -1

Allow for other test at user's discretion

x = float(input("Enter a number: "))
print(f"The cube of {x} is {cube(x)}.")

a. What happens if we import this module?

b. What undesirable behavior occurs on import, and how can we fix
it?

Exercises 175

Exercise 05
What’s wrong with these assertions and how would you fix them?

a.

assert 1 + 1 = 5, "I must not understand addition!"

b.

n = int(input("Enter an integer: "))
assert (n + n == 2 * n + 1, "Arithmetic error!")

Hint: Try these out in the Python shell.

Exercise 06
Write a program with a function that takes three integers as arguments
and returns their sum. Comment first, then write your code.

Chapter 10

Sequences

In this chapter, we’ll introduce two new types, lists and tuples. These
are fundamental data structures that can be used to store, retrieve, and,
in some contexts, manipulate data. We sometimes refer to these as “se-
quences” since they carry with them the concepts of order and sequence.

Strings (str) are also sequences.

Learning objectives
• You will learn about lists, and about common list operations, in-

cluding adding and removing elements, finding the number of el-
ements in a list, checking to see if a list contains a certain value,
etc.

• You will learn that lists are mutable. This means that you can
modify a list after it’s created. We can append items, remove items,
change the values of individual items and more.

• You will learn about tuples. Tuples are unlike lists in that they are
immutable—they cannot be changed.

• You will learn that strings are sequences.
• You will learn how to use indices to retrieve individual values from

these structures.

In the next chapter, we’ll learn how to iterate over the elements of a
sequence.

Terms introduced
• list
• tuple
• mutable
• immutable
• index
• sequence unpacking
• slicing

177

178 Sequences

10.1 Lists
The list is one of the most widely used data structures in Python. One
could not enumerate all possible applications of lists.1 Lists are ubiqui-
tous, and you’ll see they come in handy!

What is a list?
A list is a mutable sequence of objects. That sounds like a mouthful, but
it’s not that complicated. If something is mutable, that means that it can
change (as opposed to immutable, which means it cannot). A sequence is
an ordered collection—that is, each element in the collection has its own
place in some ordering.

For example, we might represent customers queued up in a coffee shop
with a list. The list can change—new people can get in the coffee shop
queue, and the people at the front of the queue are served and they
leave. So the queue at the coffee shop is mutable. It’s also ordered—each
customer has a place in the queue, and we could assign a number to each
position. This is known as an index.

How to write a list in Python
The syntax for writing a list in Python is simple: we include the objects
we want in our list within square brackets. Here are some examples of
lists:

coffee_shop_queue = ['Bob', 'Egbert', 'Jason', 'Lisa',
'Jim', 'Jackie', 'Sami']

scores = [74, 82, 78, 99, 83, 91, 77, 98, 74, 87]

We separate elements in a list with commas.
Unlike many other languages, the elements of a Python list needn’t

all be of the same type. So this is a perfectly valid list:

mixed = ['cheese', 0.1, 5, True]

There are other ways of creating lists in Python, but this will suffice for
now.

At the Python shell, we can display a list by giving its name.

>>> mixed = ['cheese', 0.1, 5, True]
>>> mixed
['cheese', 0.1, 5, True]

1If you’ve programmed in another language before, you may have come to know
similar data structures, for example, ArrayList in Java, mutable vectors in C++, etc.
However, there are many differences, so keep that in mind.

Lists 179

The empty list
Is it possible for a list to have no elements? Yup, and we call that the
empty list.

>>> aint_nothing_here = []
>>> aint_nothing_here
[]

Accessing individual elements in a list
As noted above, lists are ordered. This allows us to access individual
elements within a list using an index. An index is just a number that
corresponds to an element’s position within a list. The only twist is that
in Python, and most programming languages, indices start with zero
rather than one.2 So the first element in a list has index 0, the second
has index 1, and so on. Given a list of 𝑛 elements, the indices into the
list will be integers in the interval [0, 𝑛 − 1].

Figure 10.1: A list and its indices

In the figure (above) we depict a list of floats of size eleven—that is,
there are eleven elements in the list. Indices are shown below the list,
with each index value associated with a given element in the list. Notice
that with a list of eleven elements, indices are integers in the interval
[0, 10].

Let’s turn this into a concrete example:

>>> data = [4.2, 9.5, 1.1, 3.1, 2.9, 8.5, 7.2, 3.5, 1.4, 1.9, 3.3]

Now let’s access individual elements of the list. For this, we give the
name of the list followed immediately by the index enclosed in brackets:

>>> data[0]
4.2

The element in the list data, at index 0, has a value of 4.2. We can access
other elements similarly.

2Some languages are one-indexed, meaning that their indices start at one, but
these are in the minority. One-indexed languages include Cobol, Fortran, Julia,
Matlab, R, and Lua.

180 Sequences

>>> data[1]
9.5
>>> data[9]
1.9

IndexError

Let’s say we have a list with 𝑛 elements. What happens if we try to access
a list using an index that doesn’t exist, say index 𝑛 or index 𝑛 + 1?

>>> foo = [2, 4, 6]
>>> foo[3] # there is no element at index 3!!!
Traceback (most recent call last):

File "/.../code.py", line 90, in runcode
exec(code, self.locals)

File "<input>", line 1, in <module>
IndexError: list index out of range

This IndexError message is telling us there is no element with index 3.

Changing the values of individual elements in a list
We can use the index to access individual elements in the list for modi-
fication as well (remember: lists are mutable).

Let’s say there was an error in data collection, and we wanted to
change the value at index 7 from 3.5 to 6.1. To do this, we put the list
and index on the left side of an assignment.

>>> data
[4.2, 9.5, 1.1, 3.1, 2.9, 8.5, 7.2, 3.5, 1.4, 1.9, 3.3]
>>> data[7] = 6.1
>>> data
[4.2, 9.5, 1.1, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]

Let’s do another: We’ll change the element at index 2 to 4.7.

>>> data[2] = 4.7
>>> data
[4.2, 9.5, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]

Some convenient built-in functions that work with lists
Python provides many tools and built-in functions that work with lists
(and tuples, which we’ll see soon). Here are a few such built-in functions:

Lists 181

description constraint(s) if any example
sum() calculates sum of

elements
values must be numeric or
Boolean *

sum(data)

len() returns number of
elements

none len(data)

max() returns largest
value

can’t mix numerics and
strings;

max(data)

must be all numeric or all
strings

min() returns smallest
value

can’t mix numerics and
strings;

min(data)

must be all numeric or all
strings

* In the context of sum(), max(), and min(), Boolean True is treated as 1
and Boolean False is treated as 0.

Using our example data (from above):

>>> sum(data)
52.8
>>> len(data)
11
>>> max(data)
9.5
>>> min(data)
1.4

It seems natural at this point to ask, can I calculate the average
(mean) of the values in a list? If the list contains only numeric values, the
answer is “yes,” but Python doesn’t supply a built-in for this. However,
the solution is straightforward.

>>> sum(data) / len(data)
4.8

… and there’s our mean!

Some convenient list methods
We’ve seen already that string objects have methods associated with
them. For example, .upper(), .lower(), and .capitalize(). Recall that
methods are just functions associated with objects of a given type, which
operate on the object’s data (value or values).

Lists also have handy methods which operate on a list’s data. Here
are a few:

182 Sequences

description constraint(s) if any example
.sort() sorts list can’t mix strings data.sort()

and numerics

.append() appends an item to list none data.append(8)

.pop() “pops” the last
element off list

cannot pop from
empty list

data.pop()

and returns its value
or
removes the element at
index 𝑖

must be valid
index

data.pop(2)

and returns its value

There are many others, but let’s start with these.

Appending an element to a list
To append an element to a list, we use the .append() method, where x is
the element we wish to append.

>>> data
[4.2, 9.5, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]
>>> data.append(5.9)
>>> data
[4.2, 9.5, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3, 5.9]

By using the .append() method, we’ve appended the value 5.9 to the end
of the list.

“Popping” elements from a list
We can remove (pop) elements from a list using the .pop() method. If we
call .pop() without an argument, Python will remove the last element in
the list and return its value.

>>> data.pop()
5.9
>>> data
[4.2, 9.5, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]

Notice that the value 5.9 is returned, and that the last element in the
list (5.9) has been removed.

Sometimes we wish to pop an element from a list that doesn’t happen
to be the last element in the list. For this we can supply an index, .pop(i),
where i is the index of the element we wish to pop.

>>> data.pop(1)
9.5

Lists 183

>>> data
[4.2, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]

For reasons which may be obvious, we cannot .pop() from an empty list,
and we cannot .pop(i) if the index i does not exist.

Sorting a list in place
Now let’s look at .sort(). In place means that the list is modified right
where it is, and there’s no list returned from .sort(). This means that
calling .sort() alters the list!

>>> data
[4.2, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]
>>> data.sort()
>>> data
[1.4, 1.9, 2.9, 3.1, 3.3, 4.2, 4.7, 6.1, 7.2, 8.5]

This is unlike the string methods like .lower() which return an altered
copy of the string. Why is this? Strings are immutable; lists are mutable.

Because .sort() sorts a list in place, it returns None. So don’t think
you can work with the return value of .sort() because there isn’t any!
Example:

>>> m = [5, 7, 1, 3, 8, 2]
>>> n = m.sort()
>>> n
>>> type(n)
<class 'NoneType'>

Some things you might not expect
Lists behave differently from many other objects when performing as-
signment. Let’s say you wanted to preserve your data “as-is” but also
have a sorted version. You might think that this would do the trick.

>>> data = [4.2, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]
>>> copy_of_data = data # naively thinking you're making a copy
>>> data.sort()
>>> data
[1.4, 1.9, 2.9, 3.1, 3.3, 4.2, 4.7, 6.1, 7.2, 8.5]

But now look what happens when we inspect copy_of_data.

>>> copy_of_data
[1.4, 1.9, 2.9, 3.1, 3.3, 4.2, 4.7, 6.1, 7.2, 8.5]

Wait! What? How did that happen?

184 Sequences

When we made the assignment copy_of_data = data we assumed (quite
reasonably) that we were making a copy of our data. It turns out this is
not so. What we wound up with was two names for the same underlying
data structure, data and copy_of_data. This is the way things work with
mutable objects (like lists).3

So how do we get a copy of our list? One way is to use the .copy()
method.4 This will return a copy of the list, so we have two different list
instances.5

>>> data = [4.2, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]
>>> copy_of_data = data.copy() # call the copy method
>>> data.sort()
>>> data
[1.4, 1.9, 2.9, 3.1, 3.3, 4.2, 4.7, 6.1, 7.2, 8.5]
>>> copy_of_data
[4.2, 4.7, 3.1, 2.9, 8.5, 7.2, 6.1, 1.4, 1.9, 3.3]

A neat trick to get the last element of a list
Let’s say we have a list, and don’t know how many elements are in it.
Let’s say we want the last element in the list. How might we go about
it?

We could take a brute force approach. Say our list is called x.

>>> x[len(x) - 1]

Let’s unpack that. Within the brackets we have the expression len(x)
- 1. len(x) returns the number of elements in the list, and then we
subtract 1 to adjust for zero-indexing (if we have 𝑛 elements in a list,
the index of the last element is 𝑛 − 1). So that works, but it’s a little
clunky. Fortunately, Python allows us to get the last element of a list
with an index of -1.

>>> x[-1]

You may think of this as counting backward through the indices of the
list.

A puzzle (optional)
Say we have some list x (as above), and we’re intrigued by this idea of
counting backward through a list, and we want to find an alternative way
to access the first element of any list of any size with a negative-valued

3The reasons for this state of affairs is beyond the scope of this text. However,
if you’re curious, see: https://docs.python.org/3/library/copy.html.

4There are other approaches to creating a copy of a list, specifically using the
list constructor or slicing with [:], but we’ll leave these for another time. However,
slicing is slower than the other two. Source: I timed it.

5Actually it makes what’s called a shallow copy. See: https://docs.python.org/
3/library/copy.html.

https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/copy.html
https://docs.python.org/3/library/copy.html

Tuples 185

index. Is this possible? Can you write a solution that works for any list
x?

10.2 Tuples
A tuple? What’s a tuple? A tuple is an immutable sequence of objects.

Like lists they allow for indexed access of elements. Like lists they
may contain any arbitrary type of Python object (int, float, bool, str,
etc.). Unlike lists they are immutable, meaning that once created they
cannot change. You’ll see that this property can be desirable in certain
contexts.

How do we write a tuple?
The crucial thing in writing a tuple is commas—we separate elements of a
tuple with commas—but it’s conventional to write them with parentheses
as well.

Here are some examples:

>>> coordinates = 0.378, 0.911
>>> coordinates
(0.378, 0.911)
>>> coordinates = (1.452, 0.872)
>>> coordinates
(1.452, 0.872)

We can create a tuple with a single element with a comma, with or
without parentheses.

>>> singleton = 5,
>>> singleton
(5,)
>>> singleton = ('Hovercraft',)
>>> singleton
('Hovercraft',)

Notice that it’s the comma that’s crucial.

>>> (5)
5
>>> ('Hovercraft')
'Hovercraft'

We can create an empty tuple, thus:

>>> empty = ()
>>> empty
()

In this case, no comma is needed.

186 Sequences

Accessing elements in a tuple
As with lists, we can access the elements of a tuple with integer indices.

>>> t = ('cheese', 42, True, -1.0)
>>> t[0]
'cheese'
>>> t[1]
42
>>> t[2]
True
>>> t[3]
-1.0

Just like lists, we can access the last element by providing -1 as an
index.

>>> t[-1]
-1.0

Finding the number of elements in a tuple
As with lists, we can get the number of elements in a tuple with len().

>>> t = ('cheese', 42, True, -1.0)
>>> len(t)
4

Why would we use tuples instead of lists?
First, there are cases in which we want immutability. Lists are a dynamic
data structure. Tuples on the other hand are well-suited to static data.

As one example, say we’re doing some geospatial tracking or analy-
sis. We might use tuples to hold the coordinates of some location—the
latitude and longitude. A tuple is appropriate in this case.

>>> (44.4783021, -73.1985849)

Clearly a list is not appropriate: we’d never want to append elements
or remove elements from latitude and longitude, and coordinates like this
belong together—they form a pair.

Another case would be records retrieved from some kind of database.

>>> student_record = ('Porcupine', 'Egbert', 'eporcupi@uvm.edu',
.... 3.21, 'sophomore')

Another reason that tuples are preferred in many contexts is that
creating a tuple is more efficient than creating a list. So, for example, if
you’re reading many records from a database into Python objects, using

Tuples 187

tuples will be faster. However, the difference is small, and could only
become a factor if handling many records (think millions).

You say tuples are immutable. Prove it.
Just try modifying a tuple. Say we have the tuple (1, 2, 3). We can
read individual elements from the tuple just like we can for lists. But
unlike lists we can’t use the same approach to assign a new value to an
element of the tuple.

>>> t = (1, 2, 3)
>>> t[0]
1
>>> t[0] = 51
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

There you have it: “ ‘tuple’ object does not support item assignment.”

What about this?

>>> t = (1, 2, 3)
>>> t = ('a', 'b', 'c')

“There!” you say, “I’ve changed the tuple!” No, you haven’t. What’s
happened here is that you’ve created a new tuple, and given it the same
name t.

What about a tuple that contains a list?
Tuples can contain any type of Python object—even lists. This is valid:

>>> t = ([1, 2, 3],)
>>> t
([1, 2, 3],)

Now let’s modify the list.

>>> t[0][0] = 5
>>> t
([5, 2, 3],)

Haven’t we just modified the tuple? Actually, no. The tuple contains
the list (which is mutable). So we can modify the list within the tuple,
but we can’t replace the list with another list.

188 Sequences

>>> t = ([1, 2, 3],)
>>> new_list = [4, 5, 6]
>>> t[0] = new_list
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

Again, the tuple is unchanged.
You may ask: What’s up with the two indices?
Say we have a list within a tuple. The list has an index within the

tuple, and the elements of the list have their indices within the list. So
the first index is used to retrieve the list from within the tuple, and the
second is used to retrieve the element from the list.

>>> t = (['a', 'b', 'c'],)
>>> t[0]
['a', 'b', 'c']
>>> t[0][0]
'a'
>>> t[0][1]
'b'
>>> t[0][2]
'c'

10.3 Mutability and immutability
Mutability and immutability are properties of certain classes of object.
For example, these are immutable—once created they cannot be changed:

• numeric types (int and float)
• Booleans
• strings
• tuples

However, lists are mutable. Later, we’ll see another mutable data
structure, the dictionary.

Immutable objects
You may ask what’s been happening in cases like this:

>>> x = 75021
>>> x
75021
>>> x = 61995
>>> x
61995

Aren’t we changing the value of x? While we might speak this way
casually, what’s really going on here is that we’re creating a new int, x.

Mutability and immutability 189

Here’s how we can demonstrate this—using Python’s built-in function
id().6

>>> x = 75021
>>> id(x)
4386586928
>>> x = 61995
>>> id(x)
4386586960

See? The IDs have changed.
The IDs you’ll see if you try this on your computer will no doubt be

different. But you get the idea: different IDs mean we have two different
objects!

Same goes for strings, another immutable type.

>>> s = 'Pharoah Sanders' # who passed away the day I wrote this
>>> id(s)
4412581232
>>> s = 'Sal Nistico'
>>> id(s)
4412574640

Same goes for tuples, another immutable type.

>>> t = ('a', 'b', 'c')
>>> id(t)
4412469504
>>> t[0] = 'z' # Try to change an element of t...
Traceback (most recent call last):
File "/Library/.../code.py", line 90, in runcode

exec(code, self.locals)
File "<input>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment
>>> id(t) # still the same object
4412469504
>>> t = ('z', 'y', 'x')
>>> id(t)
4412558784

Mutable objects
Now let’s see what happens in the case of a list. Lists are mutable.

6While using id() is fine for tinkering around in the Python shell, this is the
only place it should be used. Never include id() in any programs you write. The
Python documentation states that id() returns “the ‘identity’ of an object. This is
an integer which is guaranteed to be unique and constant for this object during its
lifetime. Two objects with non-overlapping lifetimes may have the same id() value.”
So please keep this in mind.

190 Sequences

>>> parts = ['rim', 'hub', 'spokes']
>>> id(parts)
4412569472
>>> parts.append('inner tube')
>>> parts
['rim', 'hub', 'spokes', 'inner tube']
>>> id(parts)
4412569472
>>> parts.pop(0)
'rim'
>>> parts
['hub', 'spokes', 'inner tube']
>>> id(parts)
4412569472

See? We make changes to the list and the ID remains unchanged. It’s
the same object throughout!

Variables, names, and mutability
Assignment in Python is all about names, and it’s important to under-
stand that when we make assignments we are not copying values from
one variable to another. This becomes most clear when we examine the
behavior with respect to mutable objects (for example, lists):

>>> lst_a = [1, 2, 3, 4, 5]
>>> lst_b = lst_a

Now let’s change lst_a.

>>> lst_a.append(6)
>>> lst_b
[1, 2, 3, 4, 5, 6]

See? lst_b isn’t a copy of lst_a, it’s a different name for the same object!
If a mutable value has more than one name, if we affect some change

in the value via one name, all the other names still refer to the mutated
value.

Now, what do you think about this example:

>>> lst_a = [1, 2, 3, 4, 5]
>>> lst_b = [1, 2, 3, 4, 5]
>>> lst_a.append(6)

Are lst_a and lst_b different names for the same object? Or do they
refer to different objects?

Mutability and immutability 191

>>> lst_a
[1, 2, 3, 4, 5, 6]
>>> lst_b
[1, 2, 3, 4, 5]

lst_a and lst_b are names for different objects! Now, does this mean
that assignment works differently for mutable and immutable objects?
Not at all.

Then why, you may ask, when we assign 1 to x and 1 to y do both
names refer to the same value, whereas when we assign [1, 2, 3, 4, 5]
to lst_a and [1, 2, 3, 4, 5] to lst_b we have two different lists?

Let’s say you and a friend wrote down lists of the three greatest base-
ball teams of all time. Furthermore, let’s say your lists were identical…

Trigger warning: opinions about MLB teams follow!

>>> my_list = ['Cubs', 'Tigers', 'Dodgers']
>>> janes_list = ['Cubs', 'Tigers', 'Dodgers']

Now, my list is my list, and Jane’s list is Jane’s list. These are two
different lists.

Let’s say that the Dodgers fell out of favor with Jane, and she replaced
them with the Cardinals (abhorrent, yes, I know).

>>> janes_list.pop()
'Dodgers'
>>> janes_list.append('Cardinals')
>>> janes_list
['Cubs', 'Tigers', 'Cardinals']
>>> my_list
['Cubs', 'Tigers', 'Dodgers']

That makes sense, right? Even though the lists started with identical ele-
ments, they’re still two different lists and mutating one does not mutate
the other.

But be aware that we can give two different names to the same mu-
table object (as shown above).

>>> lst_a = [1, 2, 3, 4, 5]
>>> lst_b = lst_a
>>> lst_a.append(6)
>>> lst_a
[1, 2, 3, 4, 5, 6]
>>> lst_b
[1, 2, 3, 4, 5, 6]

This latter case is relevant when we pass a list to a function. We may
think we’re making a copy of the list, when in fact, we’re only giving it
another name. This can result in unexpected behavior—we think we’re

192 Sequences

modifying a copy of a list, when we’re actually modifying the list under
another name!

10.4 Subscripts are indices
Here we make explicit the connection between subscript notation in
mathematics and indices in Python.

In mathematics: Say we have a collection of objects 𝑋. We can refer
to individual elements of the collection by associating each element of
the collection with some index from the natural numbers. Thus,

𝑥0 ∈ 𝑋
𝑥1 ∈ 𝑋

…
𝑥𝑛 ∈ 𝑋

Different texts may use different starting indices. For example, a linear
algebra text probably starts indices at one. A text on set theory is likely
to use indices starting at zero.

In Python, sequences—lists, tuples, and strings—are indexed in this
fashion. All Python indices start at zero, and we refer to Python as being
zero indexed.

Indexing works the same for lists, tuples, and even strings. Remember
that these are sequences—ordered collections—so each element has an
index, and we may access elements within the sequence by its index.

my_list = ['P', 'O', 'R', 'C', 'U', 'P', 'I', 'N', 'E']

We start indices at zero, and for a list of length 𝑛, the indices range from
zero to 𝑛 − 1.

It’s exactly the same for tuples.

my_tuple = ('P', 'O', 'R', 'C', 'U', 'P', 'I', 'N', 'E')

Concatenating lists and tuples 193

The picture looks the same, doesn’t it? That’s because it is! It’s even the
same for strings.

my_string = 'PORCUPINE'

While we don’t explicitly separate the characters of a string with commas,
they are a sequence nonetheless, and we can read characters by index.

10.5 Concatenating lists and tuples
Sometimes we have two or more lists or tuples, and we want to combine
them. We’ve already seen how we can concatenate strings using the +
operator. This works for lists and tuples too!

>>> plain_colors = ['red', 'green', 'blue', 'yellow']
>>> fancy_colors = ['ultramarine', 'ochre', 'indigo', 'viridian']
>>> all_colors = plain_colors + fancy_colors
>>> all_colors
['red', 'green', 'blue', 'yellow', 'ultramarine', 'ochre',
'indigo', 'viridian']

or

>>> plain_colors = ('red', 'green', 'blue', 'yellow')
>>> fancy_colors = ('ultramarine', 'ochre', 'indigo', 'viridian')
>>> all_colors = plain_colors + fancy_colors
>>> all_colors
('red', 'green', 'blue', 'yellow', 'ultramarine', 'ochre',
'indigo', 'viridian')

This works just like coupling railroad cars. Coupling two trains with
multiple cars preserves the ordering of the cars.

Answering the inevitable question: Can we concatenate a list with a
tuple using the + operator? No, we cannot.

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> [1, 2, 3] + (4, 5, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate list (not "tuple") to list

194 Sequences

10.6 Copying lists
We’ve seen elsewhere that the following simply gives another name to a
list.

>>> lst_1 = ['gamma', 'epsilon', 'delta', 'alpha', 'beta']
>>> lst_2 = lst_1
>>> lst_1.sort()
>>> lst_2
['alpha', 'beta', 'delta', 'epsilon', 'gamma']

However, there are times when we really mean to make a copy. The
.copy() method returns a shallow copy of a list.

>>> lst_1 = ['gamma', 'epsilon', 'delta', 'alpha', 'beta']
>>> lst_2 = lst_1.copy()
>>> lst_1.sort()
>>> lst_2
['gamma', 'epsilon', 'delta', 'alpha', 'beta']

We can copy a list using a slice.

>>> lst_1 = ['gamma', 'epsilon', 'delta', 'alpha', 'beta']
>>> lst_2 = lst_1[:] # slice
>>> lst_1.sort()
>>> lst_2
['gamma', 'epsilon', 'delta', 'alpha', 'beta']

There’s another way we can copy a list: using the list constructor. The
list constructor takes some iterable and iterates it, producing a new list
composed of the elements yielded by iteration. Since lists are iterable,
we can use this to create a copy of a list.

>>> lst_1 = ['gamma', 'epsilon', 'delta', 'alpha', 'beta']
>>> lst_2 = list(lst_1) # using the list constructor
>>> lst_1.sort()
>>> lst_2
['gamma', 'epsilon', 'delta', 'alpha', 'beta']

So now we have three ways to make a copy of a list:

• By using the .copy() method
• By slicing (lst_2 = lst_1[:])
• By using the list constructor (lst_2 = list(lst_1))

Fun fact: Under the hood, .copy() simply calls the list constructor to
make a new list.

Finding an element within a sequence 195

10.7 Finding an element within a sequence
It should come as no surprise that if we have a sequence of objects,
we often wish to see if an element is in the sequence (list, tuple, or
string). Sometimes we also want to find the index of the element within
a sequence. Python makes this relatively straightforward.

Checking to see if an element is in a sequence
Say we have the following list:

>>> fruits = ['kumquat', 'papaya', 'kiwi', 'lemon', 'lychee']

We can check to see if an element exists using the Python keyword in.

>>> 'kiwi' in fruits
True
>>> 'apple' in fruits
False

We can use the evaluation of such expressions in conditions:

>>> if 'apple' in fruits:
... print("Let's bake a pie!")
... else:
... print("Oops. No apples.")
...
Oops. No apples.

or

>>> if 'kiwi' in fruits:
... print("Let's bake kiwi tarts!")
... else:
... print("Oops. No kiwis.")
...
Let's bake kiwi tarts!

This works the same with numbers or with mixed-type lists.

>>> some_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> 5 in some_primes
True
>>> 4 in some_primes
False

or

196 Sequences

>>> mixed = (42, True, 'tobacconist', 3.1415926)
>>> 42 in mixed
True
>>> -5 in mixed
False

We can also check to see if some substring is within a string.

>>> "quick" in "The quick brown fox..."
True

So, we can see that the Python keyword in can come in very handy
in a variety of ways.

Getting the index of an element in a sequence
Sometimes we want to know the index of an element in a sequence.

For this we use .index() method. This method takes some value as an
argument and returns the index of the first occurrence of that element
in the sequence (if found).

>>> fruits = ['kumquat', 'papaya', 'kiwi', 'lemon', 'lychee']
>>> fruits.index('lychee')
4

However, this one can bite. If the element is not in the list, Python will
raise a ValueError exception.

>>> fruits.index('frog')
Traceback (most recent call last):

File "/Library/Frameworks/.../code.py", line 90, in runcode
exec(code, self.locals)

File "<input>", line 1, in <module>
ValueError: 'frog' is not in list

This is rather inconvenient, since if this were to occur when running your
program, it would crash your program! Yikes! So what can be done?
Later on in this textbook we’ll learn about exception handling, but for
now, here’s a different solution: just check to see if the element is in the
list (or other sequence) first by using an if statement, and then get the
index if it is indeed in the list.

>>> if 'frog' in fruits:
... print(f"The index of frog in fruits is "
... f"{fruits.index('frog')}")
... else:
... print("'frog' is not among the elements in the list!")

This way you can avoid ValueError.

Sequence unpacking 197

10.8 Sequence unpacking
Python provides us with an elegant syntax for unpacking the individual
elements of a sequence as separate variables. We call this unpacking.

>>> x, y = (3.945, 7.002)
>>> x
3.945
>>> y
7.002

Here, each element in the tuple on the right-hand side is assigned to a
matching variable on the left-hand side.

>>> x = (2,)
>>> x
2
>>> x, y, z = ('a', 'b', 'c')
>>> x
'a'
>>> y
'b'
>>> z
'c'

This works with tuples of any size!

a, b, c, d, e = ('Hello', 5, [1, 2, 3], 'Chocolate', 2022)

However, the number of variables on the left-hand side must match the
number of elements in the tuple on the right-hand side. If they don’t
match, we get an error, either ValueError: too many values to unpack
or ValueError: not enough values to unpack.

Tuple unpacking is particularly useful by:

• allowing for more concise and readable code by assigning multiple
values to variables on a single line,

• allowing for multiple values to be returned by a function,
• making it easier to swap variable values (more on this shortly).

Can we unpack lists too?
Yup. We can unpack lists the same way.

x, y = [1, 2]

But this isn’t used as much as tuple unpacking. Can you think why this
may be so?

The reason is that lists are dynamic, and we may not know at runtime
how many elements we have to unpack. This scenario occurs less often

198 Sequences

with tuples, since they are immutable, and once created, we know how
many elements they have.

What if we want to unpack but we don’t care about
certain elements in the sequence?
Let’s say we want the convenience of sequence unpacking, but on the
right-hand side we have a tuple or a function which returns a tuple, and
we don’t care about some element in the tuple. In cases like this, we
often use the variable name _ to signify “I don’t really care about this
value”.

Examples:

>>> _, lon = (44.318393, -72.885126) # don't care about latitude

or

>>> lat, _ = (44.318393, -72.885126) # don't care about longitude

This makes it clear visually that we’re only concerned with a specific
value, and is preferred over names like temp, foo, junk or whatever.

Occasionally, you may see code where two elements of an unpacked
sequence are ignored. In these cases, it’s not unusual to see both _ and
__ used as variable names to signify “I don’t care.”

Examples:

>>> _, lon, __ = (44.318393, -72.885126, 1244.498)

or

>>> lat, _, __ = (44.318393 -72.8851266, 1244.498)

or

>>> _, __, elevation = (44.318393, -72.8851266, 1244.498)

It is possible also to reuse _. For example, this works just fine:

>>> _, _, elevation = (44.318393, -72.8851266, 1244.498)

In this instance, Python unpacks the first element of the tuple to _, then
it unpacks the second element of the tuple to _, and then it unpacks the
third element to the variable elevation.

If you were to inspect the value of _ after executing the line above,
you’d see it holds the value −72.8851266.

Strings are sequences 199

Swapping variables with tuple unpacking
In many languages, swapping variables requires a temporary variable.
Let’s say we wanted to swap the values of variables a and b. In most
languages we’d need to do something like this:

int a = 1
int b = 2

// now swap
int temp = a
a = b
b = temp

This is unnecessary in Python.

a = 1
b = 2

now swap
b, a = a, b

That’s a fun trick, eh?

10.9 Strings are sequences
We’ve already seen another sequence type: strings. Strings are nothing
more than immutable sequences of characters (more accurately sequences
of Unicode code points). Since a string is a sequence, we can use index
notation to read individual characters from a string. For example:

>>> word = "omphaloskepsis" # which means "navel gazing"
>>> word[0]
'o'
>>> word[-1]
's'
>>> word[2]
'p'

We can use in to check whether a substring is within a string. A substring
is one or more contiguous characters within a string.

>>> word = "omphaloskepsis"
>>> "k" in word
True
>>> "halo" in word
True
>>> "chicken" in word
False

200 Sequences

We can use min() and max() with strings. When we do, Python will
compare characters (Unicode code points) within the string. In the case
of min(), Python will return the character with the lowest-valued code
point. In the case of max(), Python will return the character with the
highest-valued code point.

We can also use len() with strings. This returns the length of the
string.

>>> word = "omphaloskepsis"
>>> max(word)
's'
>>> min(word)
'a'
>>> len(word)
14

Recall that Unicode includes thousands of characters, so these work with
more than just letters in the English alphabet.

Comprehension check
1. What is returned by max('headroom')?
2. What is returned by min('frequency')?
3. What is returned by len('toast')?

10.10 Sequences: a quick reference guide

Mutability and immutability

Type Mutable Indexed read Indexed write
list yes yes yes
tuple no yes no
str no yes no

Built-ins

Type len() sum() min() and max()

list yes yes (if numeric) yes, with some restrictions
tuple yes yes (if numeric) yes, with some restrictions
str yes no yes

Slicing 201

Methods

Type .sort(), .append(), and .pop() .index()

list yes yes
tuple no yes
str no yes

• If an object is mutable, then the object can be modified.
• Indexed read: m[i] where m is a list or tuple, and i is a valid index

into the list or tuple.
• Indexed write: m[i] on left-hand side of assignment.
• Python built-in len() works the same for lists and tuples.
• Python built-ins sum(), min(), and max() behave the same for lists

and tuples.
• For sum() to work m must contain only numeric types (int, float)

or Booleans. So, for example, sum([1, 1.0, True]) yields three. We
cannot sum over strings.

• min() and max() work so long as the elements of the list or tuple
are comparable—meaning that >, >=, <, <=, == can be applied to any
pair of list elements. We cannot compare numerics and strings, but
we can compare numerics with numerics and strings with strings.

• We can test whether a value is in a list or tuple with in. For example
'cheese' in m returns a Boolean.

• m.sort(), m.append(), and m.pop() work for lists only. Tuples are
immutable. Note that these change the list in place.

• We cannot apply m.sort() if the list or tuple contains elements
which are not comparable.

• We must supply an argument to m.append() (we have to append
something).

• m.pop() without argument pops the last element from a list.
• m.pop(i) where i is a valid index into m pops the element at index

i from the list.
• We cannot pop from an empty list (IndexError).
• m.index(x) will return the index of the first occurrence of x in m.

Note: This will raise ValueError if x is not in m.

10.11 Slicing
Python supports a powerful means for extracting data from a sequence
(string, list or tuple) called slicing.

Basic slicing
We can take a slice through some sequence by specifying a range of
indices.

202 Sequences

>>> un_security_council = ['China', 'France', 'Russia', 'UK',
... 'USA', 'Albania', 'Brazil', 'Gabon',
... 'Ghana', 'UAE', 'India', 'Ireland',
... 'Kenya', 'Mexico', 'Norway']

Let’s say we just wanted the permanent members of the UN Secu-
rity Council (these are the first five in the list). Instead of providing a
single index within brackets, we provide a range of indices, in the form
<sequence>[<start>:<end>].

>>> un_security_council[0:5]
['China', 'France', 'Russia', 'UK', 'USA']

“Hey! Wait a minute!” you say, “We provided a range of six indices! Why
doesn’t this include ‘Albania’ too?”

Reasonable question. Python treats the ending index as its stopping
point, so it slices from index 0 to index 5 but not including the element
at index 5! This is the Python way, as you’ll see with other examples
soon. It does take a little getting used to, but when you see this kind of
indexing at work elsewhere, you’ll understand the rationale.

What if we wanted the non-permanent members whose term ends in
2023? That’s Albania, Brazil, Gabon, Ghana, and UAE.

To get that slice we’d use

>>> un_security_council[5:10]
['Albania', 'Brazil', 'Gabon', 'Ghana', 'UAE']

Again, Python doesn’t return the item at index 10; it just goes up to
index 10 and stops.

Some shortcuts
Python allows a few shortcuts. For example, we can leave out the starting
index, and Python reads from the start of the list (or tuple).

>>> un_security_council[:10]
['China', 'France', 'Russia', 'UK', 'USA',
'Albania', 'Brazil', 'Gabon', 'Ghana', 'UAE']

By the same token, if we leave out the ending index, then Python will
read to the end of the list (or tuple).

>>> un_security_council[10:]
['India', 'Ireland', 'Kenya', 'Mexico', 'Norway']

Now you should be able to guess what happens if we leave out both start
and end indices.

Slicing 203

>>> un_security_council[:]
['China', 'France', 'Russia', 'UK', 'USA',
'Albania', 'Brazil', 'Gabon', 'Ghana', 'UAE',
'India', 'Ireland', 'Kenya', 'Mexico', 'Norway']

We get a copy of the entire list (or tuple)!
Guess what these do:

• un_security_council[-1:]
• un_security_council[:-1]
• un_security_council[5:0]
• un_security_council[5:-1]

Specifying the stride
Imagine you’re on a stepping-stone path through a garden. You might
be able to step one stone at a time. You might be able to step two stones
at a time—skipping over every other stone. If you have long legs, or the
stones are very close together, you might be able to step three stones at
a time! We call this step size or stride.

In Python, when specifying slices we can specify the stride as a third
parameter. This comes in handy if we only want values at odd indices or
at even indices.

The syntax is <sequence>[<start>:<stop>:<stride>].
Here are some examples:

>>> un_security_council[::2] # only even indices
['China', 'Russia', 'USA', 'Brazil', 'Ghana',
'India', 'Kenya', 'Norway']

>>> un_security_council[1::2] # only odd indices
['France', 'UK', 'Albania', 'Gabon', 'UAE',
'Ireland', 'Mexico']

What happens if the stride is greater than the number of elements in the
sequence?

>>> un_security_council[::1000]
['China']

Can we step backward? Sure!

>>> un_security_council[-1::-1]
['Norway', 'Mexico', 'Kenya', 'Ireland', 'India',
'UAE', 'Ghana', 'Gabon', 'Brazil', 'Albania',
'USA', 'UK', 'Russia', 'France', 'China']

Now you know one way to get the reverse of a sequence. Can you think
of some use cases for changing the stride?

204 Sequences

10.12 Passing mutables to functions
You’ll recall that as an argument is passed to a function it is assigned
to the corresponding formal parameter. This, combined with mutability,
can sometimes cause confusion.7

Mutable and immutable arguments to a function
Here’s an example where some confusion often arises.

>>> def foo(lst):
... lst.append('Waffles')
...
>>> breakfasts = ['Oatmeal', 'Eggs', 'Pancakes']
>>> foo(breakfasts)
>>> breakfasts
['Oatmeal', 'Eggs', 'Pancakes', 'Waffles']

Some interpret this behavior incorrectly, assuming that Python must
handle immutable and mutable arguments differently! This is not correct.
Python passes mutable and immutable arguments the same way. The
argument is assigned to the formal parameter.

The result of this example is only a little different than if we’d done
this:

>>> breakfasts = ['Oatmeal', 'Eggs', 'Pancakes']
>>> lst = breakfasts
>>> lst.append('Waffles')
>>> breakfasts
['Oatmeal', 'Eggs', 'Pancakes', 'Waffles']

All we’ve done is give two different names to the same list, by assign-
ment. In the example with the function foo (above) the only difference is
that the name lst exists only within the scope of the function. Otherwise,
these two examples behave the same.

Notice that there is no “reference” being passed, just an assignment
taking place.

Names have scope, values do not
This example draws out another point. To quote Python guru Ned
Batchelder:

Names have scope but no type. Values have type but no scope.
7If you search on the internet you may find sources that say that immutable

object are passed by value and mutable objects are passed by reference in Python.
This is not correct! Python always passes by assignment—no exceptions. This is
different from many other languages (for example, C, C++, Java). If you haven’t
heard these terms before, just ignore them.

Passing mutables to functions 205

What do we mean by that? Well, in the case where we pass the list
breakfast to the function foo, we create a new name for breakfast, lst.
This name, lst, exists only within the scope of the function, but the value
persists. Since we’ve given this list another name, breakfast, which exists
outside the scope of the function we can still access this list once the
function call has returned, even though the name lst no longer exists.

Here’s another demonstration which may help make this more clear.

>>> def foo(lst):
... lst.append('Waffles')
... print(lst)
...
>>> foo(['Oatmeal', 'Eggs', 'Pancakes'])
['Oatmeal', 'Eggs', 'Pancakes', 'Waffles']

However, now we can no longer use the name lst since it exists only
within the scope of the function.

>>> lst
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'lst' is not defined. Did you mean: 'list'?

Where did the list go?
When an object no longer has a name that refers to it, Python will destroy
the object in a process called garbage collection. We won’t cover garbage
collection in detail. Let it suffice to understand that once an object no
longer has a name that refers to it, it will be subject to garbage collection,
and thus inaccessible.

So in the previous example, where we passed a list literal to the func-
tion, the only time the list had a name was during the execution of the
function. Again, the formal parameter is lst, and the argument (in this
last example) is the literal ['Oatmeal', 'Eggs', 'Pancakes']. The assign-
ment that took place when the function was called was lst = ['Oatmeal',
'Eggs', 'Pancakes']. Then we appended 'Waffles', printed the list, and
returned.

Poof! lst is gone.

206 Sequences

10.13 Exceptions

IndexError

When dealing with sequences, you may encounter IndexError. This ex-
ception is raised when an integer is supplied as an index, but there is no
element at that index.

>>> lst = ['j', 'a', 's', 'p', 'e', 'r']
>>> lst[6]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

Notice that the error message explicitly states “list index out of range”.
In the example above, we have a list of six elements, so valid indices range
up to five. There is no element at index six, so if we attempt to access
lst[6], an IndexError is raised.

TypeError

Again, when dealing with sequences, you may encounter TypeError in
a new context. This occurs if you try to use something other than an
integer (or slice) as an index.

>>> lst[1.0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: list indices must be integers or slices, not float

>>> lst['cheese']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: list indices must be integers or slices, not str

>>> lst[None]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: list indices must be integers or slices, not NoneType

Notice that the error message explicitly states that “list indices must
be integers or slices” and in each case, it identifies the offending type
that was actually supplied.

Exercises 207

10.14 Exercises
Where appropriate, guess first, then check your guess in the Python shell.

Exercise 01
Given the following list,

>>> mammals = ['cheetah', 'aardvark', 'bat', 'dikdik', 'ermine']

write the indices that correspond to:

a. aardvark
b. bat
c. cheetah
d. dikdik
e. ermine

Give an example of an index, n, that would result in an IndexError if we
were to use it in the expression mammals[n].

Exercise 02
Given the following tuple

>>> elements = (None, 'hydrogen', 'helium', 'lithium',
... 'beryllium', 'boron', 'carbon',
... 'nitrogen', 'oxygen')

write the indices that correspond to

a. beryllium
b. boron
c. carbon
d. helium
e. hydrogen
f. lithium
g. nitrogen
h. oxygen

(Extra: If you’ve had a course in chemistry, why do you think the first
element in the tuple is None?)

Exercise 03
Given the polynomial 4𝑥3 + 2𝑥2 + 5𝑥 − 4, write the coefficients as a tuple
and name the result coefficients. Use an assignment.

a. What is the value of len(coefficients)?
b. What is the value of coefficients[2]?
c. Did you write the coefficients in ascending or descending order?

Why did you make that choice?

208 Sequences

Exercise 04
Given the lists in exercises 1 and 2

>>> mammals = ['cheetah', 'aardvark', 'bat', 'dikdik', 'ermine']
>>> elements = (None, 'hydrogen', 'helium', 'lithium',
... 'beryllium', 'boron', 'carbon',
... 'nitrogen', 'oxygen')

what is the evaluation of the following expressions?

a. len(mammals) > len(elements)
b. elements[5] < mammals[2]
c. elements[-1]

Exercise 05
Write a function which, given any arbitrary list, returns True if the list
has an even number of elements and False if the list has an odd number
of elements. Name your function is_even_length().

Exercise 06
Given the following list

moons = ['Mimas', 'Enceladus', 'Tethys', 'Dione']

write one line of code which calls the function is_even_length() (see
Exercise 05) with moons as an argument and assigns the result to an
object named n. What is n’s type?

Exercise 07
Given the following list, which contains data about some moons of Saturn
and their diameters (in km),

moons = [('Mimas', 396.4), ('Enceladus', 504.2),
('Tethys', 1062.2), ('Dione', 1122.8)]

a. If we were to perform the assignment m = moons[0], what would m’s
type be?

b. How would we get the name of the moon from m?

c. How would we get the diameter of the moon from m?

d. Write a single line of code which calculates the average diame-
ter of these moons, and assigns the result to an object named
avg_diameter. (No, you do not need a loop.)

e. Write one line of code which adds Iapetus to the list, using the
same structure. The diameter of Iapetus is 1468.6 (km).

Exercises 209

f. In one line of code, write an expression which returns the diameter
of Enceladus, and assigns the result to an object named diameter.

g. What is the evaluation of the expression moons[0][0] <
moons[1][0]?

Exercise 08
Given the following

>>> countries = ['Ethiopia', 'Benin', 'Ghana', 'Angola',
... 'Cameroon', 'Kenya']
>>> countries.append('Nigeria')
>>> countries.sort()
>>> countries.pop()
>>> country = countries[2]

answer the following questions:

a. What is the value of len(countries)?

b. What is the resulting value of country?

c. What is the evaluation of len(countries[3])

Exercise 09
There are three ways to make a copy of a list:

lst_2 = lst_1.copy() # using the copy() method

lst_2 = lst_1[:] # slice encompasses entire list

lst_2 = list(lst_1) # using the list() constructor

Write a function that takes a list as an argument, makes a copy of the
list, modifies the list, and returns the modified copy. How you modify the
list is up to you, but you should use at least two different list methods.
Demonstrate that when you call this function with a list variable as
an argument, that the function returns a modified copy, and that the
original list is unchanged.

Chapter 11

Loops and iteration

In this chapter, we introduce loops. With loops, we can automate repeti-
tive tasks or calculations. Why are they called loops? Well, so far we’ve
seen code which (apart from function calls) progresses in a linear fashion
from beginning to end (even if there are branches, we still proceed in a
linear fashion). Loops change the shape of the execution of our code in
a very interesting and powerful way. They loop!

Looping allows portions of our code to execute repeatedly—either for
a fixed number of times or while some condition holds—before moving
on to execute the rest of our code.

Python provides us with two types of loop: for loops and while loops.
for loops work by iterating over some iterable object, be it a list, a tuple,
a range, or even a string. while loops continue as long as some condition
is true.

With variables, functions, branching, and loops, we have all the tools
we need to create powerful programs. All the rest, as they say, is gravy.

Learning objectives
• You will learn how to use for loops and while loops.

211

212 Loops and iteration

• You will learn how to iterate over sequences.
• You will learn how to define and use conditions which govern a

while loop.
• You will learn how to choose which type of loop is best for a par-

ticular problem.

Terms, Python keywords, built-in functions, and types
introduced

• accumulator
• alternating sum
• arithmetic sequence
• break
• enumerate() (built-in) and enumerate (type)
• Fibonacci sequence
• for
• iterable
• iterate
• loop
• nested loop
• range() (built-in) and range (type)
• stride
• summation
• while

11.1 Loops: an introduction
It is very often the case that we want to perform a repetitive task, or
perform some calculation that involves a repetition of a step or steps.
This is where computers really shine. Humans don’t much enjoy repeti-
tive tasks. Computers couldn’t care less. They’re capable of performing
repetitive tasks with relative ease.

We perform repetitive tasks or calculations, or operations on elements
in some data structure using loops or iteration.

We have two basic types of loops in Python: while loops, and for
loops.

If you’ve written code in another language, you may find that Python
handles while loops in a similar fashion, but Python handles for loops
rather differently.

A while loop performs some repetitive task or calculation as long as
some condition is true.

A for loop iterates over an iterable. What is an iterable? An iterable
is a composite object (made of parts, called “members” or “elements”)
which is capable of returning its members one at a time, in a specific
sequence. Recall: lists, tuples, and strings are all iterable.

Take, for example, this list:

m = [4, 2, 0, 1, 7, 9, 8, 3]

If we ask Python to iterate over this list, the list object itself “knows”
how to return a single member at a time: 4, then 2, then 0, then 1, etc.

while loops 213

We can use this to govern how many iterations we wish to perform and
also to provide data that we can use in our tasks or calculations.

In the following sections, we’ll give a thorough treatment of both kinds
of loop: while and for.

11.2 while loops
Sometimes, we wish to perform some task or calculation repetitively, but
we only want to do this under certain conditions. For this we have the
while loop. A while loop continues to execute, as long as some condition
is true or has a truthy value.

Imagine you’re simulating a game of blackjack, and it’s the dealer’s
turn. The dealer turns over their down card, and if their total is less than
17 they must continue to draw until they reach 17 or they go over 21.1
We don’t know how many cards they’ll draw, but they must continue to
draw until the condition is met. A while loop will repeat as long as some
condition is true, so it’s perfect for a case like this.

Here’s a little snippet of Python code, showing how we might use a
while loop.

Let's say the dealer has a five showing, and
then turns over a four. That gives the dealer
nine points. They *must* draw.
dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
next_card = int(input(prompt))
dealer = dealer + next_card

if dealer <= 21:
print(f"Dealer has {dealer} points!")

else:
print(f"Oh, dear. "

f"Dealer has gone over with {dealer} points!")

Here the dealer starts with a total of nine. Then, in the while loop, we
keep prompting for the number of points to be added to the dealer’s
hand. Points are added to the value of dealer. This loop will continue to
execute as long as the dealer’s score is less than 17. We see this in the
while condition:

while dealer < 17:
...

Naturally, this construction raises some questions.
1If you’re unfamiliar with the rules of blackjack, see https://en.wikipedia.org/w

iki/Blackjack

https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Blackjack

214 Loops and iteration

• What can be used as a while condition?

• When is the while condition checked?

• When does the while loop terminate?

• What happens after the loop terminates?

A while condition can be any expression which evaluates to a
Boolean or truthy value
In the example above, we have a simple Boolean expression as our while
condition. However, a while condition can be any Boolean expression,
simple or compound, or any value or expression that’s truthy or falsey—
and in Python, that’s just about anything! Examples:

lst = ['a', 'b', 'c']

while lst:
print(lst.pop(0))

Non-empty sequences are truthy. Empty sequences are falsey. So as long
as the list lst contains any elements, this while loop will continue. This
will print

a
b
c

and then terminate (because after popping the last element, the list is
empty, and thus falsey).

while x < 100 and x % 2 == 0:
...

This loop will execute as long as x is less than 100 and x is even.

The condition of a while loop is checked before each iteration
The condition of a while loop is checked before each iteration of the loop.
In this case, the condition is dealer < 17. At the start, the dealer has
nine points, so dealer < 17 evaluates to True. Since this condition is true,
the body of the loop is executed. (The body consists of the indented lines
under while dealer < 17.)

Once the body of the while loop has executed, the condition is checked
again. If the condition remains true, then the body of the loop will be
executed again. That’s why we call it a loop!

It’s important to understand that the condition is not checked while
the body of the loop is executing.

The condition is always checked before executing the body of the loop.
This might sound paradoxical. Didn’t we just say that after executing
the body the condition is checked again? Yes. That’s true, and it’s in the

while loops 215

nature of a loop to be a little… circular. However, what we’re checking
in the case of a while loop is whether or not we should execute the body.
If the condition is true, then we execute the body, then we loop back to
the beginning and check the condition again.

Termination of a while loop
At some point (if we’ve designed our program correctly), the while con-
dition becomes false. For example, if the dealer were to draw an eight,
then adding eight points would bring the dealer’s score to 17. At that
point, the condition dealer < 17 would evaluate to False (because 17 is
not less than 17), and the loop terminates.

After the loop
Once a while terminates, code execution continues with the code which
follows the loop.

It’s important to understand that the while condition is not evaluated
again after the loop has terminated.

Review of our blackjack loop

dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
 next_card = int(input(prompt))
 dealer = dealer + next_card

if dealer <= 21:
 print(f"Dealer has {dealer} points!")
else:
 print(f"Oh, dear. "
 f"Dealer has gone over with {dealer} points!")

When we first reach
this line of code, the
value of dealer is 9,
so the condition is true.
We enter the loop and
the body of the loop
is executed.

Having entered the
loop, the body is
executed. The condition
is not evaluated while
the body is being
executed.

dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
 next_card = int(input(prompt))
 dealer = dealer + next_card

if dealer <= 21:
 print(f"Dealer has {dealer} points!")
else:
 print(f"Oh, dear. "
 f"Dealer has gone over with {dealer} points!")

216 Loops and iteration

Loop!

Go back to the
start of the loop,
and check the
condition again.

If the condition is
still true, we execute
the body again.

dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
 next_card = int(input(prompt))
 dealer = dealer + next_card

if dealer <= 21:
 print(f"Dealer has {dealer} points!")
else:
 print(f"Oh, dear. "
 f"Dealer has gone over with {dealer} points!")

Since we’ve looped,
we execute the body
again.

dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
 next_card = int(input(prompt))
 dealer = dealer + next_card

if dealer <= 21:
 print(f"Dealer has {dealer} points!")
else:
 print(f"Oh, dear. "
 f"Dealer has gone over with {dealer} points!")

Loop!

At some point,
the condition should
become false, at
which point the loop
terminates…

dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
 next_card = int(input(prompt))
 dealer = dealer + next_card

if dealer <= 21:
 print(f"Dealer has {dealer} points!")
else:
 print(f"Oh, dear. "
 f"Dealer has gone over with {dealer} points!")

while loops 217

…at which point
we exit the loop
and continue with
the program code
after the loop.

Note that we don’t
re-evaluate the condition
after exiting the loop.

dealer = 9

prompt = "What's the value of the next card drawn? "

while dealer < 17:
 next_card = int(input(prompt))
 dealer = dealer + next_card

if dealer <= 21:
 print(f"Dealer has {dealer} points!")
else:
 print(f"Oh, dear. "
 f"Dealer has gone over with {dealer} points!")

Another example: coffee shop queue with limited coffee
Here’s another example of using a while loop.

Let’s say we have a queue of customers at a coffee shop. They all want
coffee (of course). The coffee shop offers small (8 oz), medium (12 oz)
and large (20 oz) coffees. However, the coffee shop has run out of beans
and all they have is what’s left in the urn. The baristas have to serve the
customers in order, and can only take orders as long as there’s at least
20 oz in the urn.

We can write a function which calculates how many people are served
in the queue and reports the result. To do this we’ll use a while loop. Our
function will take three arguments: the number of ounces of coffee in the
urn, a list representing the queue of orders, and the minimum amount of
coffee that must remain in the urn before the baristas must stop taking
orders. The queue will be a list of values—8, 12, or 20—depending on
which size each customer requests. For example,

queue = [8, 12, 20, 20, 12, 12, 20, 8, 12, ...]

Let’s call the amount of coffee in the urn reserve, the minimum
minimum, and our queue of customers customers. Our while condition is
reserve >= minimum.

def serve_coffee(reserve, customers, minimum):

customers_served = 0

while reserve >= minimum:
reserve = reserve - customers[customers_served]
customers_served += 1

print(f"We have served {customers_served} customers, "
f"and we have only {reserve} ounces remaining.")

At each iteration, we check to see if we still have enough coffee to continue
taking orders. Then, within the body of the loop, we take the customers
in order, and—one customer at a time—we deduct the amount of coffee

218 Loops and iteration

they’ve ordered. Once the reserve drops below the minimum, we stop
taking orders and report the results.

What happens if the while condition is never met?
Let’s say we called the serve_coffee() function (above), with the argu-
ments, 6, lst, and 8, where lst is some arbitrary list of orders:

serve_coffee(6, lst, 8)

In this case, when we check the while condition the first time, the con-
dition fails, because six is not greater than or equal to eight. Thus, the
body of the loop would never execute, and the function would report:

We have served 0 customers, and we have only 6 ounces remaining.

So it’s possible that the body of any given while loop might never be
executed. If, at the start, the while condition is false, Python will skip
past the loop entirely!

11.3 Input validation with while loops
A common use for a while loop is input validation.

Let’s say we want the user to provide a number from 1 to 10, inclusive.
We present the user with a prompt:

Pick a number from 1 to 10:

So far, we’ve only seen how to complain to the user:

Pick a number from 1 to 10: 999
You have done a very bad thing.
I will terminate now and speak to you no further!

That’s not very user-friendly! Usually what we do in cases like this is we
continue to prompt the user until they supply a suitable value.

Pick a number from 1 to 10: 999
Invalid input.
Pick a number from 1 to 10: -1
Invalid input.
Pick a number from 1 to 10: 7
You have entered 7, which is a very lucky number!

But here’s the problem: We don’t know how many tries it will take
for the user to provide a valid input! Will they do so on the first try? On
the second try? On the fourth try? On the twelfth try? We just don’t
know! Thus, a while loop is the perfect tool.

How would we implement such a loop in Python? What would serve
as a condition?

Input validation with while loops 219

Plot twist: In this case, we’d choose a condition that’s always true,
and then only break out of the loop when we have a number in the desired
range. This is a common idiom in Python (and many other programming
languages).

while True:
n = int(input("Pick a number from 1 to 10: "))
if 1 <= n <= 10:

break
print("Invalid input.")

if n == 7:
print("You have entered 7, "

"which is a very lucky number!")
else:

print(f"You have entered {n}. Good for you!")

Notice what we’ve done here: the while condition is the Boolean lit-
eral True. This can never be false! So we have to have a way of exiting
the loop. That’s where break comes in. break is a Python keyword which
means “break out of the nearest enclosing loop.” The if clause includes
a condition which is only true if the user’s choice is in the desired range.
Therefore, this loop will execute indefinitely, until the user enters a num-
ber between one and 10.

As far as user experience goes, this is much more friendly than just
terminating the program immediately if the user doesn’t follow instruc-
tions. Rather than complaining and exiting, our program can ask again
when it receives invalid input.

A note of caution
While the example above demonstrates a valid use of break, break should
be used sparingly. If there’s a good way to write a while loop without us-
ing break then you should do so! This often involves careful consideration
of while conditions—a worthwhile investment of your time.

It’s also considered bad form to include more than one break statement
within a loop. Again, please use break sparingly.

Other applications of while loops
We’ll see many other uses for the while loop, including performing nu-
meric calculations and reading data from a file.

Comprehension check
1. What is printed?

>>> c = 5
>>> while c >= 0:
... print(c)
... c -= 1

220 Loops and iteration

2. How many times is “Hello” printed?

>>> while False:
... print("Hello")
...

3. What’s the problem with this while loop?

>>> while True:
... print("The age of the universe is...")
...

4. How many times will this loop execute?

>>> while True:
... break
...

5. How many times will this loop execute?

>>> n = 10
>>> while n > 0:
... n = n // 2
...

6. Here’s an example showing how to pop elements from a list within
a loop.

>>> while some_list:
... element = some_list.pop()
... # Now do something useful with that element
...

Ask yourself:

• Why does this work?
• When does the while loop terminate?
• What does this have to do with truthiness or falsiness?
• Is an empty list falsey?

Challenge!
How about this loop? Try this out with a hand-held calculator.

An ancient algorithm with a while loop 221

EPSILON = 0.01

x = 2.0

guess = x
while True:

guess = sum((guess, x / guess)) / 2

if abs(guess ** 2 - x) < EPSILON:
break

print(guess)

(abs() is a built-in Python function which calculates the absolute value
of a number.) What does this loop do?

11.4 An ancient algorithm with a while loop
There’s a rather beautiful algorithm for finding the greatest common
divisor of two positive integers.

You may recall from your elementary algebra course that the greatest
common divisor of two positive integers, 𝑎 and 𝑏, is the greatest integer
which divides both 𝑎 and 𝑏 without a remainder.

For example, the greatest common divisor of 120 and 105 is 15. It’s
clear that 15 is a divisor of both 120 and 105:

120/15 = 8
105/15 = 7.

How do we know that 15 is the greatest common divisor? One way is
to factor both numbers and find all the common factors.

We’ve found the common factors of 120 and 105, which are 3 and 5,
and their product is 15. Therefore, 15 is the greatest common divisor
of 120 and 105. This works, and it may well be what you learned in
elementary algebra, however, it becomes difficult with larger numbers
and isn’t particularly efficient.

Euclid’s algorithm
Euclid was an ancient Greek mathematician who flourished around 300
BCE. Here’s an algorithm that bears Euclid’s name. It was presented
in Euclid’s Elements, but it’s likely that it originated many years before
Euclid.2

2Some historians believe that Eudoxus of Cnidus was aware of this algorithm (c.
375 BCE), and it’s quite possible it was known before that time.

222 Loops and iteration

Euclid’s GCD algorithm
input : Positive integers, 𝑎 and 𝑏
output: Calculates the GCD of 𝑎 and 𝑏
while 𝑏 does not equal 0 do

Find the remainder when we divide 𝑎 by 𝑏;
Let 𝑎 equal 𝑏;
Let 𝑏 equal the remainder;

end
𝑎 is the GCD

Let’s work out an example. Say we have 𝑎 = 342 and 𝑏 = 186.
First, we find the remainder of 342/186. 186 goes into 342 once, leaving

a remainder of 156. Now, let 𝑎 = 186, and let 𝑏 = 156. Does 𝑏 equal 0?
No, so we continue.

Find the remainder of 186/156. 156 goes into 186 once, leaving a
remainder of 30. Now, let 𝑎 = 156, and let 𝑏 = 30. Does 𝑏 equal 0? No,
so we continue.

Find the remainder of 156/30. 30 goes into 156 five times, leaving a
remainder of 6. Now, let 𝑎 = 30, and let 𝑏 = 6. Does 𝑏 equal 0? No, so
we continue.

Find the remainder of 30/6. 6 goes into 30 five times, leaving a re-
mainder of 0. Now, let 𝑎 = 6, and let 𝑏 = 0. Does 𝑏 equal 0? Yes, so we
are done.

The GCD is the value of 𝑎, so the GCD is 6.
Pretty cool, huh?

Why does it work?
If we have 𝑎 and 𝑏 both positive integers, with 𝑎 > 𝑏, then we can write

𝑎 = 𝑏𝑞 + 𝑟
where 𝑞 is the quotient of dividing 𝑎 by 𝑏 (Euclidean division) and 𝑟 is
the remainder. For example, in the first step of our example (above) we
have

342 = 1 × 186 + 156.
It follows that the GCD of 𝑎 and 𝑏 equals the GCD of 𝑏 and 𝑟.3 That is,

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟).
Thus, by successive divisions, we continue to reduce the problem to
smaller and smaller terms. At some point in the execution of the al-
gorithm, 𝑏 becomes 0, and we can divide no further. At this point, what
remains as the value for 𝑎 is the GCD, because the greatest common
divisor of 𝑎 and zero is 𝑎!

3If we have positive integers 𝑎, 𝑏 with 𝑎 > 𝑏, then by the division algorithm,
we know there exist integers 𝑞, 𝑟, such that 𝑎 = 𝑏𝑞 + 𝑟, with 𝑏 > 𝑟 ≥ 0. Let 𝑑 be
a common divisor of 𝑎 and 𝑏. Since 𝑑 divides 𝑎 and 𝑑 divides 𝑏, then there exist
integers 𝑛, 𝑚, such that 𝑎 = 𝑑𝑚 and 𝑏 = 𝑑𝑛. By substitution, we have 𝑑𝑚 = 𝑑𝑞𝑛 + 𝑟.
Rearranging terms we have 𝑑𝑚 − 𝑑𝑞𝑛 = 𝑟. By factoring, we have 𝑑(𝑚 − 𝑞𝑛) = 𝑟.
Therefore, 𝑑 divides 𝑟. Thus the set of common divisors of 𝑎 and 𝑏 is the same as
the set of common divisors of 𝑏 and 𝑟. Thus the greatest element of each of these
sets must be the same. Therefore, we have gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟), as desired.

for loops 223

This algorithm saves us from having to factor both terms.
Consider a larger problem instance with 𝑎 = 30759 and 𝑏 = 9126.

Factoring these would be a nuisance, but the Euclidean algorithm takes
only eight iterations to find the answer, 3.

Show me the code!
Here’s an implementation in Python.

"""
Implementation of Euclid's algorithm.
"""

a = int(input("Enter a positive integer, a: "))
b = int(input("Enter a positive integer, b: "))

while b != 0:
remainder = a % b
a = b
b = remainder

print(f"The GCD is {a}.")

That’s one elegant little algorithm (and one of my personal favorites).
It also demonstrates the use of a while loop, which is needed, since we
don’t know a priori how many iterations it will take to reach a solution.

11.5 for loops
We’ve seen that while loops are useful when we know we wish to perform
a calculation or task, but we don’t know in advance how many iterations
we may need. Thus, while loops provide a condition, and we loop until
that condition (whatever it may be) no longer holds true.

Python has another type of loop which is useful when:

• we know exactly how many iterations we require, or
• we have some sequence (for example, list, tuple, or string) and we

wish to perform calculations, tasks, or operations with respect to
the elements of the sequence (or some subset thereof).

This new kind of loop is the for loop. for loops are so named because
they iterate for each element in some iterable. Python for loops iterate
over some iterable. Always.4

4for loops in Python work rather differently than they do in many other lan-
guages. Some languages use counters, and thus for loops are count-controlled. For
example, in Java we might write

for (int i = 0; i < 10; ++i) {
// do something

}

224 Loops and iteration

What’s an iterable? Something we can iterate over, of course! And
what might that be? The sequence types we’ve seen so far (list, tuple,
string) are sequences, and these are iterable. We can also produce other
iterable objects (which we shall see soon).

Here’s an example. We can iterate over a list, [1, 2, 3], by taking
the elements, one at a time, in the order they appear in sequence.

>>> numbers = [1, 2, 3]
>>> for n in numbers:
... print(n)
...
1
2
3

See? In our for loop, Python iterated over the elements (a.k.a. “mem-
bers”) of the list provided. It started with 1, then 2, then 3. At that
point the list was exhausted, so the loop terminated.

If it helps, you can read for n in numbers: as “for each number, n, in
the iterable called ‘numbers’.”

This works for tuples as well.

>>> letters = ('a', 'b', 'c')
>>> for letter in letters:
... print(letter)
...
a
b
c

Notice the syntax: for <some variable> in <some iterable>:. As we
iterate over some iterable, we get each member of the iterable in turn,
one at a time. Accordingly, we need to assign these members (one at a
time) to some variable.

In the first example, above the variable has the identifier n.

>>> numbers = [1, 2, 3]
>>> for n in numbers:
... print(n)
...

As we iterate over numbers (a list), we get one element from the list at
a time (in the order they appear in the list). So at the first iteration, n
is assigned the value 1. At the second iteration, n is assigned the value 2.

In this case, there’s a counter, i, which is updated at each iteration of the loop.
Here we update by incrementing i using ++i (which in Java increments i). The loop
runs so long as the control condition i < 10 is true. On the last iteration, with i equal
to nine, i is incremented to ten, then the condition no longer holds, and the loop
exits. This is not how for loops work in Python! Python for loops always iterate
over an iterable.

for loops 225

At the third iteration, n is assigned the value 3. After the third iteration,
there are no more elements left in the sequence and the loop terminates.

Thus, the syntax of a for loop requires us to give a variable name for
the variable which will hold the individual elements of the sequence. For
example, we cannot do this:

>>> for [1, 2, 3]:
... print("Hello!")

If we were to try this, we’d get a SyntaxError. The syntax that must
be used is:

for <some variable> in <some iterable>:
body of the loop, indented

where <some variable> is replaced with a valid variable name, and <some
iterable> is the name of some iterable, be it a list, tuple, string, or other
iterable.

Iterating over a range of numbers
Sometimes we want to iterate over a range of numbers or we wish to
iterate some fixed number of times, and Python provides us with a means
to do this: the range type. This is a new type that we’ve not seen before.
range objects are iterable, and we can use them in for loops.

We can create a new range object using Python’s built-in function
range(). This function, also called the range constructor, is used to create
range objects representing arithmetic sequences.5

Before we create a loop using a range object, let’s experiment a little.
The simplest syntax for creating a range object is to pass a positive
integer as an argument to the range constructor. What we get back is
a range object, which is like a list of numbers. If we provide a positive
integer, n, as a single argument, we get a range object with n elements.

>>> r = range(4)

Now we have a range object, named r. Let’s get nosy.

>>> len(r)
4

OK. So r has 4 elements. That checks out.

5An arithmetic sequence, is a sequence of numbers such that the difference be-
tween any number in the sequence and its predecessor is constant. 1, 2, 3, 4, …is an
arithmetic sequence because the difference between each of the terms is 1. Similarly,
2, 4, 6, 8, …is an arithmetic sequence because the difference between each term is 2.
Python range objects are restricted to arithmetic sequences of integers.

226 Loops and iteration

>>> r[0]
0
>>> r[1]
1
>>> r[2]
2
>>> r[3]
3
>>> r[4]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: range object index out of range

We see that the values held by this range object, are 0, 1, 2, and 3, in
that order.

Now let’s use a range object in a for loop. Here’s the simplest possible
example:

>>> for n in range(4):
... print(n)

What do you think this will print?

• The numbers 1 through 4?
• The numbers 0 through 4? (since Python is zero-indexed)
• The numbers 0 through 3? (since Python slices go up to, but do

not include, the stop index)

Here’s the answer:

>>> for n in range(4):
... print(n)
...
0
1
2
3

Zero through three. range(n) with a single integer argument will generate
an arithmetic sequence from 0 up to, but not including, the value of the
argument.

Notice, though, that if we use range(n) our loop will execute n times.
What if we wanted to iterate integers in the interval [5, 10]? How

would we do that?

>>> for n in range(5, 11):
... print(n)
...
5
6

for loops 227

7
8
9
10

The syntax here, when we use two arguments, is range(<start>,
<stop>), where <start> and <stop> are integers or variables with inte-
ger values. The range will include integers starting at the start value up
to but not including the stop value.

What if, for some reason, we wanted only even or odd values? Or
what if we wanted to count by threes, or fives, or tens? Can we use a
different step size or stride? Yes, of course. These are all valid arithmetic
sequences. Let’s count by threes.

>>> for n in range(3, 19, 3):
... print(n)
...
3
6
9
12
15
18

This three argument syntax is range(<start>, <stop>, <stride>). The
last argument, called the stride or step size corresponds to the difference
between terms in the arithmetic sequence (the default stride is 1).

Can we go backward? Yup. We just use a negative stride, and adjust
the start and stop values accordingly.

>>> for n in range(18, 2, -3):
... print(n)
...
18
15
12
9
6
3

This yields a range which goes from 18, down to but not including 2,
counting backward by threes.

So you see, range() is pretty flexible.

What if I just want to do something many times and I
don’t care about the members in the sequence?
No big deal. While we do require a variable to hold each member of the
sequence or other iterable we’re iterating over, we aren’t required to use
it in the body of the loop. There is a convention, not required by the

228 Loops and iteration

language, but commonly used, to use an underscore as the name for a
variable that we aren’t going to use or don’t really care about.

>>> for _ in range(5):
... print("I don't like Brussles sprouts!")
...
I don't like Brussles sprouts!
I don't like Brussles sprouts!
I don't like Brussles sprouts!
I don't like Brussles sprouts!
I don't like Brussles sprouts!

(Now you know how I feel about Brussels sprouts.)

Comprehension check
1. What is the evaluation of sum(range(5))?

2. What is the evaluation of max(range(10))?

3. What is the evaluation of len(range(0, 10, 2))

11.6 Iterables
As we have seen, iterables are Python’s way of controlling a for loop.

You can think of an iterable as a sequence or composite object (com-
posed of many parts) which can return one element at a time, until the
sequence is exhausted. We usually refer to the elements of an iterable as
members of the iterable.

It’s much like dealing playing cards from a deck, and doing something
(performing a task or calculation) once for each card that’s dealt.

A deck of playing cards is an iterable. It has 52 members (the indi-
vidual cards). The cards have some order (they may be shuffled or not,
but the cards in a deck are ordered nonetheless). We can deal cards one
at a time. This is iterating through the deck. Once we’ve dealt the 52nd
card, the deck is exhausted, and iteration stops.

Now, there are two ways we could use the cards.
First, we can use the information that’s encoded in each card. For

example, we could say the name of the card, or we could add up the pips
on each card, and so on.

Alternatively, if we wanted to do something 52 times (like push-ups)
we could do one push-up for every card that was dealt. In this case, the
information encoded in each card and the order of the individual cards
would be irrelevant. Nevertheless, if we did one push-up for every card
that was dealt, we’d know when we reached the end of the deck that
we’d done 52 push-ups.

So it is in Python. When iterating some iterable, we can use the data
or value of each member (say calculating the sum of numbers in a list),
or we can just use iteration as a way of keeping count. Both are OK in
Python.

Iterables 229

Using the data provided by an iterable
Here are two examples of using the data of members of an iterable.

First, assume we have a list of integers and we want to know how
many of those numbers are even and how many are odd. Say we have
such a list in a variable named lst.

evens = 0

for n in lst:
if n % 2 == 0: # it's even

evens += 1

print(f"There are {evens} even numbers in this list, "
f"and there are {len(lst) - evens} odd numbers.")

As another example, say we have a list of all known periodic comets,
and we want to produce a list of those comets with an orbital period of
less than 100 years. We would iterate through the list of comets, check
to see each comet’s orbital period, and if that value were less than 100
years, we’d append that comet to another list. In the following example,
the list COMETS contains tuples in which the first element of the tuple is
the name of the comet, and the second element is its orbital period in
years.6

"""
Produce a list of Halley's type periodic comets
with orbital period less than 100 years.
"""
COMETS = [('Mellish', 145), ('Sheppard–Trujillo', 66),

('Levy', 51), ('Halley', 75), ('Borisov', 152),
('Tsuchinshan', 101), ('Holvorcem', 38)]
This list is abridged. You get the idea.

short_period_comets = []

for comet in COMETS:
if comet[1] < 100:

short_period_comets.append(comet)
Yes, there's a better way to do this,
but this suffices for illustration.

Here we’re using the data encoded in each member of the iterable,
COMETS.

6The orbital period of a comet is the time it takes for the comet to make one
orbit around the sun.

230 Loops and iteration

Using an iterable solely to keep count

for _ in range(1_000_000):
print("I will not waste chalk")

Here we’re not using the data encoded in the members of the iterable.
Instead, we’re just using it to keep count. Accordingly, we’ve given the
variable which holds the individual members returned by the iterable the
name _. _ is commonly used as a name for a variable that we aren’t going
to use in any calculation. It’s the programmer’s way of saying, “Yeah,
whatever, doesn’t matter what value it has and I don’t care.”

So these are two different ways to treat an iterable. In one case, we
care about the value of each member of the iterable; in the other, we
don’t. However, both approaches are used to govern a for loop.

11.7 Iterating over strings
We’ve seen how we can iterate over sequences such as lists, tuples, and
ranges. Python allows us to iterate over strings the same way we do for
other sequences!

When we iterate over a string, the iterator returns one character at a
time. Here’s an example:

>>> word = "cat"
>>> for letter in word:
... print(letter)
...
c
a
t

11.8 Calculating a sum in a loop
While we have the Python built-in function sum() which sums the ele-
ments of a sequence (provided the elements of the sequence are all of
numeric type), it’s instructive to see how we can do this in a loop (in
fact, summing in a loop is exactly what the sum() function does).

Here’s a simple example.

t = (27, 3, 19, 43, 11, 9, 31, 36, 75, 2)

sum_ = 0

for n in t:
sum_ += n

print(sum_) # prints 256
assert sum_ == sum(t) # verify answer

Loops and summations 231

We begin with a tuple of numeric values, t. Since the elements of t are
all numeric, we can calculate their sum. First, we create a variable to
hold the result of the sum. We call this, sum_.7 Then, we iterate over all
the elements in t, and at each iteration of the loop, we add the value of
each element to the variable sum_. Once the loop has terminated, sum_
holds the sum of all the elements of t. Then we print, and compare with
the result returned by sum(t) to verify this is indeed the correct result.

In calculations like this we call the variable, sum_, an accumulator
(because it accumulates the values of the elements in the iteration).

That’s how we calculate a sum in a loop!

11.9 Loops and summations
It is often the case that we have some formula which includes a summa-
tion, and we wish to implement the summation in Python.

For example, the formula for calculating the arithmetic mean of a list
of numbers requires that we first sum all the numbers:

𝜇 = 1
𝑁

𝑁−1
∑
𝑖=0

𝑥𝑖

If you’ve not seen the symbol ∑ before, it’s just shorthand for “add
them all up.”

What’s the connection between summations and loops? The summa-
tion is a loop!

In the formula above, there’s some list of values, 𝑥 indexed by 𝑖. The
summation says: “Take all the elements, 𝑥𝑖, and sum them.” The sum-
mation portion is just

𝑁−1
∑
𝑖=0

𝑥𝑖

which is the same as
𝑥0 + 𝑥1 + … + 𝑥𝑁−2 + 𝑥𝑁−1

Here’s the loop in Python (assuming we have some list called x):

s = 0
for e in x:

s = s + e

after which, we’d divide by the number of elements in the list:

mean = s / len(x)

Yes, we could calculate the sum with sum() but what do you think sum()
does behind the scenes? Exactly this!

7Why do we use the trailing underscore? To avoid overwriting the Python built-
in function sum() with a new definition.

232 Loops and iteration

Here’s another. Let’s say we wanted to calculate the sum of the
squares of a list of numbers (which is common enough). Here’s the sum-
mation notation (again using zero indexing):

𝑁−1
∑
𝑖=0

𝑥2
𝑖

Here’s the loop in Python:

s = 0
for e in x:

s = s + e ** 2

See? The connection between summations and loops is straightforward.

11.10 Products
The same applies to products. Just as we can sum by adding all the
elements in some list or tuple of numerics, we can also take their product
by multiplying. For this, instead of the symbol ∑, we use the symbol Π
(that’s an upper-case Π to distinguish it from the constant 𝜋).

𝑁−1
∏
𝑖=0

𝑥𝑖

This is the same as
𝑥0 × 𝑥1 × … × 𝑥𝑁−2 × 𝑥𝑁−1

The corresponding loop in Python:

p = 1
for e in x:

p = p * e

Why do we initialize the accumulator to 1? Because that’s the mul-
tiplicative identity. If we set this equal to zero the product would be
zero, because anything multiplied by zero is zero. Anything multiplied
by one is itself. Thus, if calculating a repeated product, we initialize the
accumulator to one.

11.11 enumerate()

We’ve seen how to iterate over the elements of an iterable in a for loop.

for e in lst:
print(e)

Sometimes, however, it’s helpful to have both the element and the index
of the element at each iteration. One common application requiring an
element and the index of the element is in calculating an alternating

enumerate() 233

sum. Alternating sums appear in analysis, number theory, combinatorics,
many with real-world applications.

An alternating sum is simply a summation where the signs of terms
alternate. Rather than

𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + …
where the signs are all positive, an alternating sum would look like this:

𝑥0 − 𝑥1 + 𝑥2 − 𝑥3 + 𝑥4 − 𝑥5 + …
Notice that we alternate addition and subtraction.

There are many ways we could implement this. Here’s one rather
clunky example (which assumes we have a list of numerics named lst):

alternating_sum = 0

for i in range(len(lst)):
if i % 2: # i is odd, then we subtract

alternating_sum -= lst[i]
else:

alternating_sum += lst[i]

This works. Strictly speaking from a mathematical standpoint it is
correct, but for i in range(len(lst)) and then using i as an index
into lst is considered an “anti-pattern” in Python. (Anti-patterns are
patterns that we should avoid.)

So what’s a programmer to do?
enumerate() to the rescue! Python provides us with a handy built-

in function called enumerate(). This iterates over all elements in some
sequence and yields a tuple of the index and the element at each iteration.

Here’s the same loop implemented using enumerate():

alternating_sum = 0

for i, e in enumerate(lst):
if i % 2:

alternating_sum -= e
else:

alternating_sum += e

We do away with having to call len(list) and we do away with indexed
reads from lst.

Here’s another example, where we wish to perform indexed writes
into a list in a loop. Say we wanted to increment every element in a
list of numeric values by a constant. Here’s how we can do this with
enumerate().

incr = 5
lst = [1, 2, 3, 4]

for i, e in enumerate(lst):

234 Loops and iteration

lst[i] = e + incr

That’s it! After this code has run, lst has the value [6, 7, 8, 9].
In many cases, use of enumerate() leads to cleaner and more readable

code. But how does it work? What, exactly, does enumerate() do?
If we pass some iterable—say a list, tuple, or string—as an argument

to enumerate() we get a new iterable object back, one of type enumerate
(this is a new type we haven’t seen before). When we iterate over an
enumerate object, it yields tuples. The first element of the tuple is the
index of the element in the original iterable. The second element of the
tuple is the element itself.

That’s a lot to digest at first, so here’s an example:

lst = ['a', 'b', 'c', 'd']
for i, element in enumerate(lst):

print(f"The element at index {i} is '{element}'.")

This prints:

The element at index 0 is 'a'.
The element at index 1 is 'b'.
The element at index 2 is 'c'.
The element at index 3 is 'd'.

The syntax that we use above is tuple unpacking (which we saw in
an earlier chapter). When using enumerate() this comes in really handy.
We use one variable to hold the index and one to hold the element.
enumerate() yields a tuple, and we unpack it on the fly to these two
variables.

Let’s dig a little deeper using the Python shell.

>>> lst = ['a', 'b', 'c']
>>> en = enumerate(lst)
>>> type(en) # verify type is `enumerate`
<class 'enumerate'>
>>> for t in en: # iterate `en` without tuple unpacking
... print(t)
...
(0, 'a')
(1, 'b')
(2, 'c')

So you see, what’s yielded at each iteration is a tuple of index and ele-
ment. Pretty cool, huh?

Now that we’ve learned a little about enumerate() let’s revisit the
alternating sum example:

Tracing a loop 235

alternating_sum = 0

for i, e in enumerate(lst):
if i % 2:

alternating_sum -= e
else:

alternating_sum += e

Recall that we’d assumed lst is a previously defined list of numeric
elements. When we pass lst as an argument to enumerate() we get an
enumerate object. When we iterate over this object, we get tuples at each
iteration. Here we unpack them to variables i and e. i is assigned the
index, and e is assigned the element.

If you need both the element and its index, use enumerate().

11.12 Tracing a loop
Oftentimes, we wish to understand the behavior of a loop that perhaps
we did not write. One way to suss out a loop is to use a table to trace the
execution of the loop. When we do this, patterns often emerge, and—in
the case of a while loop—we understand better the termination criteria
for the loop.

Here’s an example. Say you were asked to determine the value of the
variable s after this loop has terminated:

s = 0
for n in range(1, 10):

if n % 2:
n is odd; 1 is truthy
s = s + 1 / n

else:
n must be even; 0 is falsey
s = s - 1 / n

Let’s make a table, and fill it out. The first row in the table will
represent our starting point, subsequent rows will capture what goes on
in the loop. In this table, we need to keep track of two things, n and s.

n s

0

Before we enter the loop, s has the value 0.
Now consider what values we’ll be iterating over. range(1, 10) will

yield the values 1, 2, 3, 4, 5, 6, 7, 8 and 9. So let’s add these to our table
(without calculating values for s yet).

236 Loops and iteration

n s

0
1 ?
2 ?
3 ?
4 ?
5 ?
6 ?
7 ?
8 ?
9 ?

Since there are no break or return statements, we know we’ll iterate
over all these values of n.

Now let’s figure out what happens to s within the loop. At the first
iteration, n will be 1, which is odd, so the if branch will execute. This
will add 1 / n to s, so at the end of the first iteration, s will equal 1 (1
/ 1). So we write that down in our table:

Tracing a loop 237

n s

0
1 1
2 ?
3 ?
4 ?
5 ?
6 ?
7 ?
8 ?
9 ?

Now for the next iteration. At the next iteration, n takes on the value
2. Which branch executes? Well, 2 is even, so the else branch will execute
and 1/2 will be subtracted from s. Let’s not perform decimal expansion,
so we can write:

n s

0
1 1
2 1 − 1/2
3 ?
4 ?
5 ?
6 ?
7 ?
8 ?
9 ?

Now for the next iteration. n takes on the value 3, 3 is odd, and so
the if branch executes and we add 1/3 to s. Again, let’s not perform
decimal expansion (not doing so will help us see the pattern that will
emerge).

n s

0
1 1
2 1 − 1/2
3 1 − 1/2 + 1/3
4 ?
5 ?
6 ?
7 ?
8 ?
9 ?

Now for the next iteration. n takes on the value 4, 4 is even, and so
the else branch executes and we subtract 1/4 to s.

238 Loops and iteration

n s

0
1 1
2 1 − 1/2
3 1 − 1/2 + 1/3
4 1 − 1/2 + 1/3 − 1/4
5 ?
6 ?
7 ?
8 ?
9 ?

Do you see where this is heading yet? No? Let’s do a couple more
iterations.

At the next iteration. n takes on the value 5, 5 is odd, and so the if
branch executes and we add 1/5 to s. Then n takes on the value 6, 6 is
even, and so the else branch executes and we subtract 1/6 to s.

n s

0
1 1
2 1 − 1/2
3 1 − 1/2 + 1/3
4 1 − 1/2 + 1/3 − 1/4
5 1 − 1/2 + 1/3 − 1/4 + 1/5
6 1 − 1/2 + 1/3 − 1/4 + 1/5 − 1/6
7 ?
8 ?
9 ?

At this point, it’s likely you see the pattern (if not, just work out two
or three more iterations). This loop is calculating

1 − 1
2 + 1

3 − 1
4 + 1

5 − 1
6 + 1

7 − 1
8 + 1

9
See? At each iteration, we’re checking to see if n is even or odd. If n is
odd, we add 1 / n; if n is even, we subtract 1 / n.

We can write this more succinctly using summation notation. This
loop calculates

𝑠 =
𝑛=9
∑
𝑛=1

(−1)𝑛−1 1
𝑛 .

You may ask yourself: What’s up with the (−1)𝑛−1 term? That’s han-
dling the alternating sign!

• What’s (−1)0? 1.

• What’s (−1)1? -1.

• What’s (−1)2? 1.

Tracing a loop 239

• What’s (−1)3? -1.

• What’s (−1)4? 1.

Another example: factorial
In mathematics, the factorial of a natural number, 𝑛 is the product of
all the natural numbers up to and including 𝑛. It is written with an
exclamation point, for example,

6 ! = 1 × 2 × 3 × 4 × 5 × 6.
Let’s trace a Python loop which calculates factorial.

n = 6

f = 1
for i in range(2, n + 1):

f = f * i

What does this loop do? At each iteration, it multiplies 𝑓 by 𝑖 and
makes this the new 𝑓 .

i f

1
2 2
3 6
4 24
5 120
6 720

This calculates factorial, 𝑛! for some 𝑛. (Yes, there are easier ways.)
Remember:

𝑛 ! =
𝑖=𝑛
∏
𝑖=1

𝑖.

Another example: discrete population growth

birth_rate = 0.05
death_rate = 0.03
pop = 1000 # population
n = 4

for _ in range(n):
pop = int(pop * (1 + birth_rate - death_rate))

240 Loops and iteration

_ p

1000
1 1020
2 1040
3 1060
4 1081

Here we don’t use the value of the loop index in our calculations, but
we include it in our table just to keep track of which iteration we’re on. In
this example, we multiply the old pop by (1 + birth_rate - death_rate)
and make this the new pop at each iteration. This one’s a nuisance to
work out by hand, but with a calculator it’s straightforward.

What is this calculating? This is calculating the size of a population
which starts with 1000 individuals, and which has a birth rate of 5%
and a death rate of 3%. This calculates the population after four time
intervals (for example, years).

Being able to trace through a loop (or any portion of a program) is a
useful skill for a programmer.

11.13 Nested loops
It’s not uncommon that we include one loop within another. This is
called nesting, and such loops are called nested loops.

Let’s say we wanted to print out pairings of contestants in a round
robin chess tournament (a “round robin” tournament is one in which
each player plays each other player). Because in chess white has a slight
advantage over black, it’s fair that each player should play each other
player twice: once as black and once as white.

We’ll represent each game with the names of the players, in pairs,
where the first player listed plays white and the second plays black.

So in a tiny tournament with players Anne, Bojan, Carlos, and Doris,
we’d have the pairings:

Anne (W) vs Bojan (B)
Anne (W) vs Carlos (B)
Anne (W) vs Doris (B)
Bojan (W) vs Anne (B)
Bojan (W) vs Carlos (B)
Bojan (W) vs Doris (B)
Carlos (W) vs Anne (B)
Carlos (W) vs Bojan (B)
Carlos (W) vs Doris (B)
Doris (W) vs Anne (B)
Doris (W) vs Bojan (B)
Doris (W) vs Carlos (B)

(we exclude self-pairings for obvious reasons).
Given the list of players, ['Anne', 'Bojan', 'Carlos', 'Doris'], how

could we write code to generate all these pairings? One way is with a
nested loop.

Nested loops 241

players = ['Anne', 'Bojan', 'Carlos', 'Doris']

for white in players:
for black in players:

if white != black: # exclude self-pairings
print(f"{white} (W) vs {black} (B)")

This code, when executed, prints exactly the list of pairings shown above.
How does this work? The outer loop—for white in players:—iterates

over all players, one at a time: Anne, Bojan, Carlos, and Doris. For each
iteration of the outer loop, there’s an iteration of the inner loop, again:
Anne, Bojan, Carlos, and Doris. If the element assigned to white in the
outer loop does not equal the element assigned to black in the inner loop,
we print the pairing. In this way, all possible pairings are generated.

Here’s another example—performing multiplication using a nested
loop. (What follows is inefficient, and perhaps a little silly, but hopefully
it illustrates the point.)

Let’s say we wanted to multiply 5 × 7 without using the * operator.
We could do this with a nested loop!

answer = 0

for _ in range(5):
for __ in range(7):

answer += 1

print(answer) # prints 35

How many times does the outer loop execute? Five. How many times
does the inner loop execute for each iteration of the outer loop? Seven.
How many times do we increment answer? 5 × 7 = 35.

Using nested loops to iterate a two-dimensional list
Yikes! What’s a two-dimensional list? A two-dimensional list is just a
list containing other lists!

Let’s say we have the outcome of a game of tic-tac-toe encoded in a
two-dimensional list:

game = [
['X', ' ', 'O'],
['O', 'X', 'O'],
['X', ' ', 'X']

]

To print this information in tabular form we can use a nested loop.

242 Loops and iteration

for row in game:
for col in row:

print(col, end='')
print()

This prints

X O
OXO
X X

11.14 Stacks and queues
Now that we’ve seen lists and loops, it makes sense to present two fun-
damental data structures: the stack and the queue. You’ll see that im-
plementing these in Python is almost trivial—we use a list for both, and
the only difference is how we use the list.

Stacks
A stack is what’s called a last in, first out data structure (abbreviated
LIFO and pronounced life-o). It’s a linear data structure where we add
elements to a list at one end, and remove them from the same end.

The canonical example for a stack is cafeteria trays. Oftentimes these
are placed on a spring-loaded bed, and cafeteria customers take the tray
off the top and the next tray in the stack is exposed. The first tray to be
put on the stack is the last one to be removed. You’ve likely seen chairs
that can be stacked. The last one on is the first one off. Have you ever
packed a suitcase? What’s gone in last is the first to come out. Have you
ever hit the ‘back’ button in your web browser? Web browsers use a stack
to keep track of the pages you’ve visited. Have you ever used ctrl-z to
undo an edit to a document? Do you have a stack of dishes or bowls in
your cupboard? Guess what? These are all everyday examples of stacks.

We refer to appending an element to a stack as pushing. We refer to
removing an element to a stack as popping (this should sound familiar).

Stacks and queues 243

Stacks are very widely used in computer science and stacks are at the
heart of many important algorithms. (In fact, function calls are managed
using a stack!)

The default behavior for a list in Python is to function as a stack.
Yes, that’s right, we get stacks for free! If we append an item to a list,
it’s appended at one end. When we pop an item off a list, by default, it
pops from the same end. So the last element in a Python list represents
the top of the stack.

Here’s a quick example:

>>> stack = []
>>> stack.append("Pitchfork")
>>> stack.append("Spotify")
>>> stack.append("Netflix")
>>> stack.append("Reddit")
>>> stack.append("YouTube")
>>> stack[-1] # see what's on top
YouTube
>>> stack.pop()
YouTube

244 Loops and iteration

>>> stack[-1] # see what's on top
Reddit
>>> stack.pop()
Reddit
>>> stack[-1] # see what's on top
Netflix

So you see, implementing a stack in Python is a breeze.

Queues
A queue is a first in, first out linear data structure (FIFO, pronounced
fife-o). The only difference between a stack and a queue is that with a
stack we push and pop items from the same end, and with a queue we
add elements at one end and remove them from the other. That’s the
only difference.

What are some real world examples? The checkout line at a grocery
store—the first one in line is the first to be checked out. Did you ever
wait at a printer because someone had sent a job before you did? That’s
another queue. Cars through a toll booth, wait lists for customer service
chats, and so on—real world examples abound.

The terminology is a little different. We refer to appending an element
to a queue as enqueueing. We refer to removing an element to a queue as
dequeueing. But these are just fancy names for appending and popping.

Like stacks, queues are very widely used in computer science and are
at the heart of many important algorithms.

There’s one little twist needed to turn a list into a queue. With a
queue, we enqueue from one end and dequeue from the other. Like a
stack, we can use append to enqueue. The little twist is that instead of
.pop() which would pop from the same end, we use .pop(0) to pop from
the other end of the list, and voilà, we have a queue.

Here’s a quick example:

A deeper dive into iteration in Python 245

queue = []
>>> queue.append("Fred") # Fred is first in line
>>> queue.append("Mary") # Mary is next in line
>>> queue.append("Claire") # Claire ie behind Mary
>>> queue.pop(0) # Fred has been served
'Fred'
>>> queue[0] # now see who's in front
'Mary'
>>> queue.append("Gladys") # Gladys gets in line
>>> queue.pop(0) # Mary's been served
'Mary'

So you see, a list can be used as a stack or a queue. Usually, stacks
and queues are used within a loop. We’ll see a little more about this in
a later chapter.

11.15 A deeper dive into iteration in Python
What follows is a bit more detail about iterables and iteration in Python.
You can skip this section entirely if you wish. This is presented here for
the sole purpose of demonstrating what goes on “behind the scenes” when
we iterate over some object in Python. With that said, let’s start with
the case of a list (it works the same with a tuple or any other iterable).

>>> m = ['Greninja', 'Lucario', 'Mimikyu', 'Charizard']

When we ask Python to iterate over some iterable, it calls the function
iter() which returns an iterator for the iterable (in this case a list).

>>> iterator = iter(m)
>>> type(iterator)
<class 'list_iterator'>

The way iterators work is that Python keeps asking “give me the next
member”, until the iterator is exhausted. This is done (behind the scenes)
by calls to the iterator’s __next__() method.

>>> iterator.__next__()
'Greninja'
>>> iterator.__next__()
'Lucario'
>>> iterator.__next__()
'Mimikyu'
>>> iterator.__next__()
'Charizard'

Now what happens if we call __next__() one more time?
We get a StopIteration error

246 Loops and iteration

>>> iterator.__next__()
Traceback (most recent call last):

File "/Library/.../code.py", line 90, in runcode
exec(code, self.locals)

File "<input>", line 1, in <module>
StopIteration

Again, behind the scenes, when iterating through an iterable, Python
will get an iterator for that object, and then call __next__() until a
StopIteration error occurs, and then it stops iterating.

What about range()?
As we’ve seen earlier, range() returns an object of the range type.

>>> r = range(5)
>>> type(r)
<class 'range'>

But ranges are iterable, so they work with the same function iter(r),
and the resulting iterator will have __next__() as a method.

>>> iterator = iter(r)
>>> iterator.__next__()
0
>>> iterator.__next__()
1
>>> iterator.__next__()
2
>>> iterator.__next__()
3
>>> iterator.__next__()
4
>>> iterator.__next__()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

When Python iterates over a sequence (list, tuple, string) or a range
object, it first creates an iterator, then iterates the iterator.

It’s important to note that enumerate objects are themselves iterators.
This is why an enumerate object can be iterated only once. Python does
not create a new iterator for these objects automatically, as it does when
iterating sequences or range objects. (We’ll see something similar later
on when we get to csv.reader objects, but that’s for another time.)

Exercises 247

11.16 Exercises
Exercise 01
Write a while loop that adds all numbers from one to ten. Do not use
for. What is the sum? Check your work. (See: section 11.2)

Exercise 02
Without a loop but using range(), calculate the sum of all numbers from
one to ten. Check your work. (See: section 11.5)

Exercise 03
a. Write a for loop that prints the numbers 0, 2, 4, 6, 8, each on a

separate line.

b. Write a for loop that prints some sentence of your choosing five
times.

Exercise 04
Write a for loop that calculates the sum of the squares of some arbitrary
list of numerics, named data (make up your own list, but be sure that it
has at least four elements).

For example, if the list of numerics were [2, 9, 5, -1], the result
would be 111, because

2 × 2 = 4
9 × 9 = 81
5 × 5 = 25

−1 × −1 = 1

and 4 + 81 + 25 + 1 = 111.
(See: section 11.6)

Exercise 05
Write a for loop that iterates the list

lst = [23, 7, 42, 17, 9, 38, 28, 31, 49, 22, 5, 26, 15]

and prints the parity sum of the list. That is, if the number is even, add
it to the total; if the number is odd, subtract it from the total.

What is the sum? Check your work. Double-check your work.
(See: section 11.11)

Exercise 06
Write a for loop which iterates over a string and capitalizes every other
letter. For example, with the string “Rumplestiltskin”, the result should
be “RuMpLeStIlTsKiN”. With the string “HELLO WORLD!”, the result

248 Loops and iteration

should be “HeLlO WoRlD!” With the string “123456789”, the result
should be “123456789”.

What happens if we capitalize a space or punctuation or number?

Exercise 07
Create some list of your own choosing. Your list should contain at least
five elements. Once you’ve created your list, write a loop that uses
enumerate() to iterate over your list, yielding both index and element
at each iteration. Print the results indicating the element and its index.

For example, given the list

albums = ['Rid Of Me', 'Spiderland', 'This Stupid World',
'Icky Thump', 'Painless', 'New Long Leg"]

your program would print

"Rid Of Me" is at index 0.
"Spiderland" is at index 1.
"This Stupid World" is at index 2.
"Icky Thump" is at index 3.
"Painless" is at index 4.
"New Long Leg" is at index 5.

Exercise 08 (challenge!)
The Fibonacci sequence is a sequence of integers, starting with 0 and 1,
such that after these first two, each successive number in the sequence is
the sum of the previous two numbers. So, for example, the next number
is 1 because 0 + 1 = 1, the number after that is 2 because 1 + 1 = 2,
the number after that is 3 because 1 + 2 = 3, the number after that is 5
because 2 + 3 = 5, and so on.

Write a program that uses a loop (not recursion) to calculate the first
𝑛 terms of the Fibonacci sequence. Start with this list:

fibos = [0, 1]

You may use one call to input(), one if statement, and one while loop.
You may not use any other loops. You may not use recursion. Examples:

Enter n for the first n terms in the Fibonacci sequence: 7
[0, 1, 1, 2, 3, 5, 8]

Enter n for the first n terms in the Fibonacci sequence: 10
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Exercises 249

Enter n for the first n terms in the Fibonacci sequence: 50
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,
610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657,
46368, 75025, 121393, 196418, 317811, 514229, 832040,
1346269, 2178309, 3524578, 5702887, 9227465, 14930352,
24157817, 39088169, 63245986, 102334155, 165580141,
267914296, 433494437, 701408733, 1134903170, 1836311903,
2971215073, 4807526976, 7778742049]

Exercise 09
Write a function that takes a list as an argument and modifies the list in
a loop. How you modify the list is up to you, but you should use at least
two different list methods. Include code that calls the function, passing
in a list variable, and then demonstrates that the list has changed, once
the function has returned.

Exercise 10
Write a function which takes two integers, 𝑛 and 𝑘 as arguments, and
produces a list of all odd multiples of 𝑘 between 1 and 𝑛. E.g., given
input 𝑛 = 100 and 𝑘 = 7, the function should return

[7, 21, 35, 49, 63, 77, 91]

Exercise 11 (challenge!)
The modulo operator partitions the integers into equivalence classes
based on their residues (remainders) with respect to some modulus. For
example, with a modulus of three, the integers are partitioned into three
equivalence classes: those for which 𝑛 mod 3 ≡ 0, 𝑛 mod 3 ≡ 1, and 𝑛
mod 3 ≡ 2.

Write and test a function which takes as arguments an arbitrary list
of integers and some modulus, 𝑛, and returns a tuple containing the
count of elements in the list in each equivalence class, where the index
of the tuple elements corresponds to the residue. So, for example, if the
input list were [1, 5, 8, 2, 11, 15, 9] and the modulus were 3, then
the function should return the tuple (2, 1, 4), because there are two
elements with residue 0 (15 and 9), one element with residue 1, (1), and
four elements with residue 2 (5, 8, 2, 11).

Notice also that if the modulus is 𝑛, the value returned will be an
𝑛-tuple.

250 Loops and iteration

Exercise 12
Use a Python list as a stack. Start with an empty list:

stack = []

1. push ‘teal’
2. push ‘magenta’
3. push ‘yellow’
4. push ‘viridian’
5. pop
6. pop
7. push ‘amber’
8. pop
9. pop

10. push ‘vermilion’

Print your stack. Your stack should look like this

['teal', 'vermilion']

If it does not, start over and try again.
See: Section 11.14 Stacks and queues

Exercise 13
At the Python shell, create a list and use it as a queue. At the start, the
queue should be empty.

>>> queue = []

Now perform the following operations:

1. enqueue ‘red’
2. enqueue ‘blue’
3. dequeue
4. enqueue ‘green’
5. dequeue
6. enqueue ‘ochre’
7. enqueue ‘cyan’
8. enqueue ‘umber’
9. dequeue

10. enqueue ‘mauve’

Now, print your queue. Your queue should look like this:

['ochre', 'cyan', 'umber', 'mauve']

If it doesn’t, start over and try again.

Chapter 12

Randomness, games, and
simulations

Here we will learn about some of the abundant uses of randomness. Ran-
domness is useful in games (shuffle a deck, roll a die), but it’s also useful
for modeling and simulating a staggering variety of real world processes.

Learning objectives
• You will understand why it is useful to be able to generate pseudo-

random numbers or make pseudo-random choices in a computer
program.

• You will learn how to use some of the most commonly-used methods
from Python’s random module, including

– random.random() to generate a pseudo-random a floating point
number in the interval [0.0, 1.0),

– random.randint() to generate a pseudo-random integer in a
specified interval,

– random.choice() to make a pseudo-random selection of an item
from an iterable object, and

– random.shuffle() to shuffle a list.
• You will understand the role of a seed in the generation of

pseudo-random numbers, and understand how setting a seed
makes predictable the behavior of a program incorporating pseudo-
randomness.

Terms introduced
• Monte Carlo simulation
• pseudo-random
• random module
• random walk
• seed

251

252 Randomness, games, and simulations

12.1 The random module
Consider all the games you’ve ever played that involve throwing dice or
shuffling a deck of cards. Games like this are fun in part because of the
element of chance. We don’t know how many dots will come up when we
throw the dice. We don’t know what the next card to be dealt will be. If
we knew all these things in advance, such games would be boring!

Outside of games, there’s a tremendous variety of applications which
require randomness.

Simulations of all kinds make use of this—for example, modeling bio-
logical or ecological phenomena, statistical mechanics and physics, phys-
ical chemistry, modeling social or economic behavior of humans, opera-
tions research, and climate modeling. Randomness is also used in cryp-
tography, artificial intelligence, and many other domains. For example,
the Monte Carlo method (named after the famous casino in Monaco) is
a widely used technique which repeatedly samples data from a random
distribution, and has been used in science and industry since the 1940s.

Python’s random module gives us many methods for generating “ran-
dom” numbers or making “random” choices. These come in handy when
we want to implement a game of chance (or game with some chance
element) or simulation.

But think: how would you write code that simulates the throw of a
die or picks a “random” number between, say, one and ten? Really. Stop
for a minute and give it some thought. This is where the random module
comes in. We can use it to simulate such events.

I put “random” in quotation marks (above) because true randomness
cannot be calculated. What the Python random module does is generate
pseudo-random numbers and make pseudo-random choices. What’s the
difference? To the casual observer, there is no difference. However, deep
down there are deterministic processes behind the generation of these
pseudo-random numbers and making pseudo-random choices.

That sounds rather complicated, but using the random module isn’t.
If we wish to use the random module, we first import it (just like we’ve

been doing with the math module).

import random

Now we can use methods within the random module.

random.choice()

The random.choice() method takes an iterable and returns a pseudo-
random choice from among the elements of the iterable. This is useful
when selecting from a fixed set of possibilities. For example:

>>> import random
>>> random.choice(['heads', 'tails'])
'tails'

Each time we call choice this way, it will make a pseudo-random choice
between ‘heads’ and ‘tails’, thus simulating a coin toss.

The random module 253

This works with any iterable.

>>> random.choice((1, 2, 3, 4, 5))
2
>>> random.choice(['A', 'K', 'Q', 'J', '10', '9', '8', '7', '6',
... '5', '4', '3', '2'])
'7'
>>> random.choice(['rock', 'paper', 'scissors'])
'rock'
>>> random.choice(range(10))
4

It even works with a string as an iterable!

>>> random.choice("random")
'm'

Comprehension check
1. How could we use random.choice() to simulate the throw of a six-

sided die?

2. How could we use random.choice() to simulate the throw of a twelve-
sided die?

Using random.choice() for a random walk
The random walk is a process whereby we take steps along the number
line in a positive or negative direction, at random.

Starting at 0, and taking five steps, choosing -1 or +1 at random, a
walk might proceed like this: 0, -1, 0, 1, 2, 1. At each step, we move one
to the left (negative) or one to the right (positive). In a walk like this
there are 2𝑛 possible outcomes, where 𝑛 is the number of steps taken.

Here’s a loop which implements such a walk:

>>> position = 0
>>> for _ in range(5):
... position = position + random.choice([-1, 1])
...

random.random()

This method returns the next pseudo-random floating point number in
the interval [0.0, 1.0). Note that the interval given here is in mathematical
notation and is not Python syntax. Example:

x = random.random()

Here x is assigned a pseudo-random value greater than or equal to zero,
and strictly less than 1.

254 Randomness, games, and simulations

What use is this? We can use this to simulate events with a certain
probability, 𝑝. Recall that probabilities are in the interval [0.0, 1.0], where
0.0 represents impossibility, and 1.0 represents certainty. Anything be-
tween these two extremes is interesting.

Comprehension check
1. How would we generate a pseudo-random number in the interval

[0.0, 10.0)?

Using random.random() to simulate the toss of a biased coin
Let’s say we want to simulate the toss of a slightly biased coin—one
that’s rigged to come up heads 53% of the time. Here’s how we’d go
about it.

if random.random() < 0.53:
print("Heads!")

else:
print("Tails!")

This approach is commonly used in simulations in physical or biological
modeling, economics, and games.

What if you wanted to choose a pseudo-random floating point number
in the interval [−100.0, 100.0). No big deal. Remember random.random()
gives us a pseudo-random number in the interval [0.0, 1.0), so to get a
value in the desired interval we simply subtract 0.5 (so the distribution
is centered at zero) and multiply by 200 (to “stretch” the result).

x = (random.random() - 0.5) * 200

Comprehension check
1. How would we simulate an event which occurs with a probability

of 1/4?

2. How would we generate a pseudo-random floating point number in
the interval [−2.0, 2.0)?

random.randint()

As noted, we can use random.choice() to choose objects from some iter-
able. If we wanted to pick a number from one to ten, we could use

n = random.choice([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])

This is correct, but it can get cumbersome. What if we wanted to choose a
pseudo-random number between 1 and 1000? In cases like this, it’s better
to use random.randint(). This method takes two arguments representing

Pseudo-randomness in more detail 255

the upper and lower bound (inclusive). Thus, to pick a pseudo-random
integer between 1 and 1000:

n = random.randint(1, 1000)

Now we have, 𝑛, such that 𝑛 is an integer, 𝑛 ≥ 1, and 𝑛 ≤ 1000.

random.shuffle()

Sometimes, we want to shuffle values, for example a deck of cards.
random.shuffle() will shuffle a mutable sequence (for example, a list)
in place. Example:

cards = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10',
'J', 'Q', 'K']

random.shuffle(cards)

Now the cards are shuffled.

Comprehension check
1. random.shuffle() works with a list. Why wouldn’t it work with a

tuple? Would it work with a string?

2. Where’s the bug in this code?

>>> import random
>>> cards = ['A', '2', '3', '4', '5', '6', '7', '8', '9',
... '10', 'J', 'Q', 'K']
>>> cards = random.shuffle(cards)
>>> print(cards)
None
>>>

Other random methods
The random module includes many other methods which include gen-
erating random numbers sampled from various distributions, and other
nifty tools!

If you are so inclined—especially if you have some probability theory
and statistics under your belt—see: random — Generate pseudo-random
numbers: https://docs.python.org/3/library/random.html

12.2 Pseudo-randomness in more detail
I mentioned earlier that the numbers generated and choices made by the
random module aren’t truly random, they’re pseudo-random, but what
does this mean?

https://docs.python.org/3/library/random.html

256 Randomness, games, and simulations

Computers compute. They can’t pluck a random number out of thin
air. You might think that computation by your computer is deterministic
and you’d be right.

So how do we use a deterministic computing device to produce some-
thing that appears random, something that has all the statistical prop-
erties we need?

Deep down, the random module makes use of an algorithm called the
Mersenne twister (what a lovely name for an algorithm!).1 You don’t
need to understand how this algorithm works, but it’s useful to under-
stand that it does require an input used as a starting point for its calcu-
lations. This input is called a seed, and from this, the algorithm produces
a sequence of pseudo-random numbers. At each request, we get a new
pseudo-random number.

>>> import random
>>> random.random()
0.16558225561225903
>>> random.random()
0.20717009610984627
>>> random.random()
0.2577426786448077
>>> random.random()
0.5173312574262303
>>>

Try this out. (The sequence of numbers you’ll get will differ.)
So where does the seed come in? By default, the algorithm gets a

seed from your computer’s operating system. Modern operating systems
provide a special source for this, and if a seed is not supplied in your
code, the random module will ask the operating system to supply one.2

12.3 Using the seed
Most of the time we want unpredictability from our pseudo-random num-
ber generator (or choices). However, sometimes we wish to control the
process a little more, for comparability of results.

For example, it would be difficult, if not impossible, to test a program
whose output is unpredictable. This is why the random module allows us
to provide our own seed. If we start the process from the same seed, the

1M. Matsumoto and T. Nishimura, 1998, “Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator”, ACM
Transactions on Modeling and Computer Simulation, 8(1).

2If you’re curious, try this:

>>> import os # interface to the operating system
>>> os.urandom(8) # request a bytestring of size 8
b'\xa6t\x08=\xa5\x19\xde\x94'

This is where the random module gets its seed by default. This service itself requires
a seed, which the OS gets from a variety of hardware sources. The objective is for
the seed to be as unpredictable as possible.

Using the seed 257

sequence of random numbers generated or the sequence of choices made
is the same. For example,

>>> import random
>>> random.seed(42) # Set the seed.
>>> random.random()
0.6394267984578837
>>> random.random()
0.025010755222666936
>>> random.random()
0.27502931836911926
>>> random.seed(42) # Set the seed again, to the same value.
>>> random.random()
0.6394267984578837
>>> random.random()
0.025010755222666936
>>> random.random()
0.27502931836911926

Notice that the sequence of numbers generated by succes-
sive calls to random.random() are identical: 0.6394267984578837,
0.025010755222666936, 0.27502931836911926, …

Here’s another example:

>>> import random
>>> results = []
>>> random.seed('walrus')
>>> for _ in range(10):
... results.append(random.choice(['a', 'b', 'c']))
...
>>> results
['b', 'a', 'c', 'b', 'a', 'a', 'a', 'c', 'a', 'b']
>>> results = []
>>> random.seed('walrus')
>>> for _ in range(10):
... results.append(random.choice(['a', 'b', 'c']))
...
>>> results
['b', 'a', 'c', 'b', 'a', 'a', 'a', 'c', 'a', 'b']

Notice that the results are identical in both instances. If we were to
perform this experiment 1,000,000 with the same seed, we’d always get
the same result. It looks random, but deep down it isn’t.

By setting the seed, we can make the behavior of calls to random
methods entirely predictable. As you might imagine, this allows us to
test programs that incorporate pseudo-random number generation or
choices.

Try something similar with random.shuffle(). Start with a short list,
set the seed, and shuffle it. Then re-initialize the list to its original value,
set the seed again—with the same value—and shuffle it. Is the shuffled
list the same in both cases?

258 Randomness, games, and simulations

12.4 Exercises
Exercise 01
Use random.choice() to simulate a fair coin toss. This method takes an
iterable, and at each call, chooses one element of the iterable at random.
For example,

random.choice([1, 2, 3, 4, 5])

will choose one of the elements of the list, each with equal probability.
In a loop simulate 10 coin tosses. Then report the number of heads

and the number of tails.

Exercise 02
Use random.random() to simulate a fair coin toss. Remember that
random.random() returns a floating point number in the interval [0.0, 1.0).

In a loop simulate 10 coin tosses. Then report the number of heads
and the number of tails.

Exercise 03
Simulate a biased coin toss. You may assume that, in the limit, the
biased coin comes up heads 51.7% of the time. Unlike Exercise 01,
random.choice() won’t work because outcomes are not equally probable.

In a loop simulate 10 such biased coin tosses. Then report the number
of heads and the number of tails.

Exercise 04
random.shuffle() takes some list as an argument and shuffles the list in-
place. (Remember, lists are mutable, and shuffling in place means that
random.shuffle() will modify the list you pass in and will return None.)

Write a program that shuffles the list

['A', 'K', 'Q', 'J', '10', '9', '8', '7', '6',
'5', '4', '3', '2']

and then using .pop() in a while loop “deal the cards” one at a time
until the list is exhausted. Print each card as it is popped from the list.

Exercise 05
The gambler’s ruin simulates a gambler starting with some amount of
money and gambling until they run out. Probability theory tells us they
will always run out of money—it’s just a matter of time.

Write a program which prompts the user for some amount of money
and then simulates the gambler’s ruin by betting on a fair coin toss. Use
an integer value for the money, and wager one unit on each coin toss.

Your program should report the number of coin tosses it took the
gambler to go bust.

Exercises 259

Exercise 06
Write a program that simulates the throwing of two six-sided dice.

In a loop, simulate the throw, and report the results. For example, if
the roll is a two and a five, print “2 + 5 = 7”. Prompt the user, asking
if they want to roll again or quit.

Exercise 07 (challenge!)
Write a program that prompts the user for a number of throws, 𝑛, and
then simulates 𝑛 throws of two six-sided dice. Record the total of dots
for each throw. To record the number of dots use a list of integers. Start
with a list of all zeros.

counts = [0] * 13
This gets you a list of all zeros like this:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We're going to ignore the element at index zero

Then, for each throw of the dice, calculate the total number of dots
and increment the corresponding element in the list. For example, if the
first three throws are five, five, and nine, then counts should look like
this

[0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0]

After completing 𝑛 rolls, print the result (again, ignoring the element
at index 0) and verify with an assertion that the sum of the list equals
𝑛.

Exercise 08
In mathematics, one of the requirements of a function is that given the
same input it produces the same output. Always.

For example, the square of 2 is always 4. You can’t check back later
and find that it’s 4.1, or 9, or something else. Applying a function to the
same argument will always yield the same result. If this is not the case,
then it’s not a function.

Question: Are the functions in the random module truly functions? If
so, why? If not, why not?

Exercise 09 (challenge!)
Revisit the gambler’s ruin from Exercise 05.

Modify the program so that it runs 1,000 simulations of the gambler’s
ruin, and keeps track of how many times it took for the gambler to run
out of money. However—and this is important—always start with the
same amount of money (say 1,000 units of whatever currency you like).

Then calculate the mean and standard deviation of the set of simula-
tions.

The mean, written 𝜇, is given by

260 Randomness, games, and simulations

𝜇 = 1
𝑁

𝑁−1
∑
𝑖 = 0

𝑥𝑖

where we have a set of outcomes, 𝑋, indexed by 𝑖, with 𝑁 equal to the
number of elements in 𝑋.

The standard deviation, written 𝜎, is given by

𝜎 = 1
𝑁

𝑁−1
∑
𝑖 = 0

(𝑥𝑖 − 𝜇)2.

Once that’s done, run the program again, separately, for 10,000,
100,000, and 1,000,000 simulations, and record the results.

Does the mean change with the number of simulations? How about
the standard deviation?

What does all this tell you about gambling?
Hint: It makes sense to write separate functions for calculating mean

and standard deviation.

Chapter 13

File I/O

So far all of the input to our programs and all of the output from our
programs has taken place in the console. That is, we’ve used input() to
prompt for user input, and we’ve used print() to send output to the
console.

Of course, there are a great many ways to send information to a pro-
gram and to receive output from a program: mice and trackpads, audio
data, graphical user interfaces (“GUIs”, pronounced “gooeys”), temper-
ature sensors, accelerometers, databases, actuators, networks, web APIs
(application program interfaces), and more.

Here we will learn how to read data from a file and write data to a
file. We call this “file i/o” which is short for “file input and output.” This
is particularly useful when we have large amounts of data to process.

In order to read from or write to a file, we need to be able to open
and close a file. We will do this using a context manager.

We will also see new exceptions which may occur when attempting to
read from or write to a file, specifically FileNotFoundError.

Learning objectives
• You will learn how to read from a file.
• You will learn some of the ways to write to a file.
• You will learn some valuable keyword arguments.
• You will learn about the csv file format and Python module, as

well as how to read from and write to a .csv file.

Terms and Python keywords introduced
• as
• context manager
• CSV (file format)
• keyword argument
• with

261

262 File I/O

13.1 Context managers
A context manager is a Python object which controls (to a certain
extent) what occurs within a with statement. Context managers relieve
some of the burden placed on programmers. For example, if we open a file,
and for some reason something goes wrong and an exception is raised, we
still want to ensure that the file is closed. Before the introduction of the
with statement (in Python 2.5, almost twenty years ago), programmers
often used try/finally statements (we’ll see more about try when we get
to exception handling).

We introduce with and context managers in the context of file i/o,
because this approach simplifies our code and ensures that when we’re
done reading from or writing to a file that the file is closed automatically,
without any need to explicitly call the .close() method. The idiom we’ll
follow is:

with open("somefile.txt") as fh:
read from file
s = fh.read()

When we exit this block (that is, when all the indented code has exe-
cuted), Python will close the file automatically. Without this context
manager, we’d need to call .close() explicitly, and failure to do so can
lead to unexpected and undesirable results.

with and as are Python keywords. Here, with creates the context man-
ager, and as is used to give a name to our file object. So once the file is
opened, we may refer to it by the name given with as—in this instance
fh (a common abbreviation for “file handle”).

13.2 Reading from a file
Let’s say we have a .txt file called hello.txt in the same directory as
a Python file we just created. We wish to open the file, read its content
and assign it to a variable, and print that variable to the console. This
is how we would do this:

>>> with open('hello.txt') as f:
... s = f.read()
...
>>> print(s)
Hello World!

It’s often useful to read one line at a time into a list.

>>> lines = []
>>> with open('poem.txt') as f:
... for line in f:
... lines.append(line)
...

Writing to a file 263

>>> print(lines)
["Flood-tide below me!\n", "I see you face to face\n",
"Clouds of the west--\n", "Sun there half an hour high--\n",
"I see you also face to face.\n"]

Now, when we look at the data this way, we see clearly that newline
characters are included at the end of each line. Sometimes we wish to
remove this. For this we use the string method .strip().

>>> lines = []
>>> with open('poem.txt') as f:
... for line in f:
... lines.append(line.strip())
...
>>> print(lines)
["Flood-tide below me!", "I see you face to face",
"Clouds of the west--", "Sun there half an hour high--",
"I see you also face to face."]
>>>

The string method .strip() without any argument removes any lead-
ing or trailing whitespace, newlines, or return characters from a string.

If you only wish to remove newlines ('\n'), just use s.strip('\n')
where s is some string.

13.3 Writing to a file
So far, the only output our programs have produced is characters printed
to the console. This is fine, as far as it goes, but often we have more
output than we wish to read at the console, or we wish to store output
for future use, distribution, or other purposes. Here we will learn how to
write data to a file.

With Python, this isn’t difficult. Python provides us with a built-in
function open() which returns a file object. Then we can read from and
write to the file, using this object.

The best approach to opening a file for writing is as follows:

with open('hello.txt', 'w') as f:
f.write('Hello World!')

Let’s unpack this one step at a time.
The open() function takes a file name, an optional mode, and other

optional arguments we don’t need to trouble ourselves with right now.
So in the example above, 'hello.txt' is the file name (here, a quoted
string), and 'w' is the mode. You may have already guessed that 'w'
means “write”, and if so, you’re correct!

Python allows for other ways to specify the file, and open() will accept
any “path-like” object. Here we’ll only use strings, but be aware that
there are other ways of specifying where Python should look for a given
file.

264 File I/O

There are a number of different modes, some of which can be using
in combination. Quoting from the Python documentation:1

Character Meaning
'r' open for reading (default)
'w' open for writing, truncating the file first
'x' open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it

exists
'b' binary mode
't' text mode (default)
'+' open for updating (reading and writing)

Again, in the code snippet above, we specify 'w' since we wish to
write. We could have written:

with open('hello.txt', 'wt') as f:
f.write('Hello World!')

explicitly specifying text mode, but this is somewhat redundant. We will
only present reading and writing text data in this text.2

The idiom with open('hello.txt', 'w') as f: is the preferred ap-
proach when reading from or writing to files. We could write

f = open('hello.txt', 'w')
f.write('Hello World')
f.close()

but then it’s our responsibility to close the file when done. The idiom
with open('hello.txt', 'w') as f: will take care of closing the file
automatically, as soon as the block is exited.

Now let’s write a little more data. Here’s a snippet from a poem by
Walt Whitman (taking some liberties with line breaks):

fragment = ["Flood-tide below me!\n",
"I see you face to face\n",
"Clouds of the west--\n",
"Sun there half an hour high--\n",
"I see you also face to face.\n"]

with open('poem.txt', 'w') as fh:
for line in fragment:

fh.write(line)

1https://docs.python.org/3/library/functions.html#open
2It is often the case that we wish to write binary data to file, but doing so is

outside the scope of this text.

https://docs.python.org/3/library/functions.html#open

Keyword arguments 265

Here we simply iterate through the lines in this fragment and write them
to the file poem.txt. Notice that we include newline characters '\n' to
end each line.

Writing numeric data
The .write() method requires a string, so if you wish to write numeric
data, you should use str() or f-strings. Example:

import random

Write 10,000 random values in the range [-1.0, 1.0)
with open('data.txt', 'w') as f:

for _ in range(10_000):
x = (random.random() - 0.5) * 2.0
f.write(f"{x}\n")

Always use with

From the documentation:

Warning: Calling f.write() without using the with keyword or
calling f.close() might result in the arguments of f.write()
not being completely written to the disk, even if the program
exits successfully.

Since we can forget to call f.close(), use of with is the preferred (and
most Pythonic) approach.

Comprehension check
1. Try the above code snippets to write to files hello.txt and

poem.txt.

2. Write a program that writes five statements about you to a file
called about_me.txt.

13.4 Keyword arguments
Some of what we’ll do with files involves using keyword arguments.

Thus far, when we’ve called or defined functions, we’ve only seen po-
sitional arguments. For example, math.sqrt(x) and list.append(x) each
take one positional argument. Some functions take two or more positional
arguments. For example, math.pow(x, y), takes two positional arguments.
The first is the base, the second is the power. So this function returns x
raised to the y power (𝑥𝑦). Notice that what’s significant here is not the
names of the formal parameters but their order. It matters how we sup-
ply arguments when calling this function. Clearly, 23 (8) is not the same
as 32 (9). How does the function know which argument should be used
as the base and which argument should be used as the exponent? It’s all

266 File I/O

based on their position. The base is the first argument. The exponent is
the second argument.

Some functions allow for keyword arguments. Keyword arguments fol-
low positional arguments, and are given a name when calling the func-
tion. For example, print() allows you to provide a keyword argument
end which can be used to override the default behavior of print() which
is to append a newline character, \n, with every call. Example:

print("Cheese")
print("Shop")

prints “Cheese” and “Shop” on two different lines, because the default
is to append that newline character. However…

print("Cheese", end=" ")
print("Shop")

prints “Cheese Shop” on a single line (followed by a newline), because in
the first call to print() the end keyword argument is supplied with one
blank space, " ", and thus, no newline is appended. This is an example
of a keyword argument.

In the context of file input and output, we’ll use a similar keyword
argument when working with CSV files (comma separated values).

open('my_data.csv', newline='')

This allows us to avoid an annoying behavior in Python’s CSV module in
some contexts. We’ll get into more detail on this soon, but for now, just
be aware that we can, in certain cases, use keyword arguments where per-
mitted, and that the syntax is as shown: positional arguments come first,
followed by optional keyword arguments, with keyword arguments sup-
plied in the form keyword=value. See: The newline='' keyword argument,
below.

13.5 More on printing strings

Specifying the ending of printed strings
By default, the print() function appends a newline character with each
call. Since this is, by far, the most common behavior we desire when
printing, this default makes good sense. However, there are times when
we do not want this behavior, for example when printing strings that
are terminated with newline characters ('\n') as this would produce two
newline characters at the end. This happens often when reading certain
data from a file. In this case, and in others where we wish to override
the default behavior of print(), we can supply the keyword argument,
end. The end keyword argument specifies the character (or characters) if
any, we wish to append to a printed string.

The csv module 267

The .strip() method
Sometimes—especially when reading certain data from a file—we wish
to remove whitespace, including spaces, tabs, and newlines from strings.
One approach is to use the .strip() method. Without any argument sup-
plied, .strip() removes all leading and trailing whitespace and newlines.

>>> s = '\nHello \t \n'
>>> s.strip()
'Hello'

Or you can specify the character you wish to remove.

>>> s = '\nHello \t \n'
>>> s.strip('\n')
'Hello \t '

This method allows more complex behavior (but I find the use cases
rare). For more on .strip() see: https://docs.python.org/3/library/stdt
ypes.html?highlight=strip#str.strip

13.6 The csv module
There’s a very common format in use for tabular data, the CSV or comma
separated value format. Many on-line data sources publish data in this
format, and all spreadsheet software can read from and write to this
format. The idea is simple: columns of data are separated by commas.
That’s it!

Here’s an example of some tabular data:

Year FIFA champion
2018 France
2014 Germany
2010 Spain
2006 Italy
2002 Brazil

Here’s how it might be represented in CSV format:

Year,FIFA champion
2018,France
2014,Germany
2010,Spain
2006,Italy
2002,Brazil

Pretty simple.
What happens if we have commas in our data? Usually numbers don’t

include comma separators when in CSV format. Instead, commas are

https://docs.python.org/3/library/stdtypes.html?highlight=strip#str.strip
https://docs.python.org/3/library/stdtypes.html?highlight=strip#str.strip

268 File I/O

added only when data are displayed. So, for example, we might have
data like this (using format specifiers):

Country 2018 population
China 1,427,647,786
India 1,352,642,280
USA 327,096,265
Indonesia 267,670,543
Pakistan 212,228,286
Brazil 209,469,323
Nigeria 195,874,683
Bangladesh 161,376,708
Russia 145,734,038

and the CSV data would look like this:

Country,2018 population
China,1427647786
India,1352642280
USA,327096265
Indonesia,267670543
Pakistan,212228286
Brazil,209469323
Nigeria,195874683
Bangladesh,161376708
Russia,145734038

But what if we really wanted commas in our data?

Building Address
Waterman 85 Prospect St, Burlington, VT
Innovation 82 University Pl, Burlington, VT

We’d probably break this into additional columns.

Building,Street,City,State
Waterman,85 Prospect St,Burlington,VT
Innovation,82 University Pl,Burlington,VT

What if we really, really had to have commas in our data? Oh, OK.
Here are cousin David’s favorite bands of all time:

The csv module 269

Band Rank
Lovin’ Spoonful 1
Sly and the Family Stone 2
Crosby, Stills, Nash and Young 3
Earth, Wind and Fire 4
Herman’s Hermits 5
Iron Butterfly 6
Blood, Sweat & Tears 7
The Monkees 8
Peter, Paul & Mary 9
Ohio Players 10

Now there’s no way around commas in the data. For this we wrap the
data including commas in quotation marks.

Band,Rank
Lovin' Spoonful,1
Sly and the Family Stone,2
"Crosby, Stills, Nash and Young",3
"Earth, Wind and Fire",4
Herman's Hermits,5
Iron Butterfly,6
"Blood, Sweat & Tears",7
The Monkees,8
"Peter, Paul & Mary",9
Ohio Players,10

(We’ll save the case of data which includes commas and quotation marks
for another day.)

We can read data like this using Python’s csv module.

import csv
with open('bands.csv', newline='') as csvfile:

reader = csv.reader(csvfile)
for row in reader:

print(row)

This prints:

['Band', 'Rank']
["Lovin' Spoonful", '1']
['Sly and the Family Stone', '2']
['Crosby, Stills, Nash and Young', '3']
['Earth, Wind and Fire', '4']
["Herman's Hermits", '5']
['Iron Butterfly', '6']
['Blood, Sweat & Tears', '7']
['The Monkees', '8']
['Peter, Paul & Mary', '9']
['Ohio Players', '10']

270 File I/O

Notice that we have to create a special object, a CSV reader. We
instantiate this object by calling the constructor function, csv.reader(),
and we pass to this function the file object we wish to read. Notice also
that we read each row of our data file into a list, where the columns are
separated by commas. That’s very handy!

We can write data to a CSV file as well.

import csv

bands = [['Deerhoof', 1],
['Lightning Bolt', 2],
['Radiohead', 3],
['Big Thief', 4],
['King Crimson', 5],
['French for Rabbits', 6],
['Yak', 7],
['Boygenius', 8],
['Tipsy', 9],
['My Bloody Valentine', 10]]

with open('bands.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
for item in bands:

writer.writerow(item)

This writes

Deerhoof,1
Lightning Bolt,2
Radiohead,3
Big Thief,4
King Crimson,5
French for Rabbits,6
Yak,7
Boygenius,8
Tipsy,9
My Bloody Valentine,10

to the file.

The newline='' keyword argument
If you’re using a Mac or a Linux machine, the newline='' keyword ar-
gument may not be strictly necessary when opening a file for use with
a csv reader or writer. However, omitting it could cause problems on a
Windows machine and so it’s probably best to include it for maximum
portability. The Python documentation recommends using it.

Exceptions 271

Iterating CSV reader objects
Unlike a list, tuple, or string, a CSV reader object can only be iterated
once. This is because a CSV reader object is a type of iterator (which
is different from an iterable).3 An iterator can be iterated only once.
Accordingly, if you wish to iterate over a CSV file more than once, you’ll
need to create a new CSV reader object each time.

13.7 Exceptions

FileNotFoundError

This is just as advertised: an exception which is raised when a file is not
found. This is almost always due to a typo or misspelling in the filename,
or that the correct path is not included.

Suppose there is no file in our file system with the name
some_non-existent_file.foobar. Then, if we were to try to open a file
without creating it, we’d get a FileNotFoundError.

>>> with open("some_non-existent_file.foobar") as fh:
... s = fh.read()
...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

FileNotFoundError: [Errno 2] No such file or directory:
'some_non-existent_file.foobar'

Usually we can fix this by supplying the correct filename or a complete
path to the file.

3When iterating over a static iterable, Python creates an iterator on-the-fly
behind the scenes. However it does not do this when iterating over an iterator, since
the iterator itself already exists.

272 File I/O

13.8 Exercises

Exercise 01
Write a program which writes the following lines (including blank lines)
to a file called bashos_frog.txt.

Basho's Frog

The old pond
A frog jumped in,
Kerplunk!

Translated by Allen Ginsberg

Once you’ve run your program, open bashos_frog.txt with a text
editor or your IDE and verify it has been written correctly. If not, go
back and revise your program until it works as intended.

Exercise 02
Download the text file at https://www.uvm.edu/~cbcafier/cs1210/b
ook/data/random_floats.txt, and write a program which reads it and
reports how many lines it contains.

Exercise 03
There’s a bug in this code.

import csv

prices = []

with open("price_list.csv", 'r') as fh:
reader = csv.reader(fh)
next(reader)
for row in reader:

prices.append(row[1])

average_price = sum(prices) / len(prices)
print(average_price)

When run, this program halts on the exception “TypeError: unsupported
operand type(s) for +: ‘int’ and ‘str’ ”. You may assume that the file is
well-formed CSV, with item description in the first field and price in
USD in the second field. What’s wrong, and how can you fix it?

https://www.uvm.edu/~cbcafier/cs1210/book/data/random_floats.txt
https://www.uvm.edu/~cbcafier/cs1210/book/data/random_floats.txt

Exercises 273

Exercise 04
Write a program which writes 10 numbers to a file, closes the file, then
reads the 10 numbers from the file, and verifies the correct result. (Feel
free to use assertions to verify.)

Exercise 05
Here’s a poem, which is saved with the filename doggerel.txt.

Roses are red.
Violets are blue.
I cannot rhyme.
Have you ever seen a wombat?

There’s a bug in the following program, which is supposed to read the
file containing a poem.

with open("doggerel.txt", 'r') as fh:
for line in fh:

print(line)

When run, this results in a blank line being printed between every line
in the poem.

Roses are red.

Violets are blue.

I cannot rhyme.

Have you ever seen a wombat?

What’s wrong, and how can you fix it?

Chapter 14

Data analysis and presentation

What follows in this chapter is merely a tiny peek into the huge topic of
data analysis and presentation. This is not intended to be a substitute for
a course in statistics. There are plenty of good textbooks on the subject
(and plenty of courses at any university), so what’s presented here is just
a little something to get you started in Python.

Learning objectives
• You will gain a rudimentary understanding of two important de-

scriptive statistics: the mean and standard deviation.
• You will understand how to calculate these statistics and be able

to implement them on your own in Python.
• You will learn the basics of Matplotlib’s Pyplot interface, and be

able to use matplotlib.pyplot to create line, bar, and scatter plots.

Terms introduced
• arithmetic mean
• central tendency
• descriptive statistics
• Matplotlib
• normal distribution
• quantile (including quartile, quintile, percentile)
• standard deviation

14.1 Some elementary statistics
Statistics is the science of data—gathering, analyzing, and interpreting
data.

Here we’ll touch on some elementary descriptive statistics, which in-
volve describing a collection of data. It’s usually among the first things
one learns within the field of statistics.

The two most widely used descriptive statistics are the mean and
the standard deviation. Given some collection of numeric data, the mean
gives us a measure of the central tendency of the data. There are several

275

276 Data analysis and presentation

different ways to calculate the mean of a data set. Here we will present
the arithmetic mean (average). The standard deviation is a measure of
the amount of variation observed in a data set.

We’ll also look briefly at quantiles, which provide a different perspec-
tive from which to view the spread or variation in a data set.

The arithmetic mean
Usually, when speaking of the average of a set of data, without further
qualification, we’re speaking of the arithmetic mean. You probably have
some intuitive sense of what this means. The mean summarizes the data,
boiling it down to a single value that’s somehow “in the middle.”

Here’s how we define and calculate the arithmetic mean, denoted
𝜇, given some set of values, 𝑋.

𝜇 = 1
𝑁

𝑁−1
∑
𝑖 = 0

𝑥𝑖

where we have a set of numeric values, 𝑋, indexed by 𝑖, with 𝑁 equal to
the number of elements in 𝑋.

Here’s an example: number of dentists per 10,000 population, by coun-
try, 2020.1

The first few records of this data set look like this:

Country Value
Bangladesh 0.69
Belgium 11.33
Bhutan 0.97
Brazil 6.68
Brunei 2.38
Cameroon 0.049
Chad 0.011
Chile 14.81
Colombia 8.26
Costa Rica 10.58
Cyprus 8.58
… …

Assume we have these data saved in a CSV file named
dentists_per_10k.csv. We can use Python’s csv module to read
the data.

1Source: World Health Organization: https://www.who.int/data/gho/data/
indicators/indicator-details/GHO/dentists-(per-10-000-population) (retrieved
2023-07-07)

https://www.who.int/data/gho/data/indicators/indicator-details/GHO/dentists-(per-10-000-population)
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/dentists-(per-10-000-population)

Some elementary statistics 277

data = []
with open('dentists_per_10k.csv', newline='') as fh:

reader = csv.reader(fh)
next(reader) # skip the first row (column headings)
for row in reader:

data.append(float(row[1]))

We can write a function to calculate the mean. It’s a simple one-liner.

def mean(lst):
return sum(lst) / len(lst)

That’s a complete implementation of the formula:

𝜇 = 1
𝑁

𝑁−1
∑
𝑖 = 0

𝑥𝑖

We take all the 𝑥𝑖 and add them up (with sum()). Then we get the number
of elements in the set (with len()) and use this as the divisor. If we print
the result with print(f"{mean(data):.4f}") we get 5.1391.

That tells us a little about the data set: on average (for the sample
of countries included) there are a little over five dentists per 10,000 pop-
ulation. If everyone were to go to the dentist once a year, that would
suggest, on average, that each dentist serves a little less than 2,000 pa-
tients per year. With roughly 2,000 working hours in a year, that seems
plausible. But the mean doesn’t tell us much more than that.

To get a better understanding of the data, it’s helpful to understand
how values are distributed about the mean.

Let’s say we didn’t know anything about the distribution of values
about the mean. It would be reasonable for us to assume these values
are normally distributed. There’s a function which describes the normal
distribution, and you’ve likely seen the so-called “bell curve” before.

278 Data analysis and presentation

On the 𝑥-axis are the values we might measure, and on the 𝑦-axis we
have the probability of observing a particular value. In a normal distri-
bution, the mean is the most likely value for an observation, and the
greater the distance from the mean, the less likely a given value. The
standard deviation tells us how spread out values are about the mean. If
the standard deviation is large, we have a broad curve:

With a smaller standard deviation, we have a narrow curve with a higher
peak.

The area under these curves is equal.

Some elementary statistics 279

If we had a standard deviation of zero, that would mean that every
value in the data set is identical (that doesn’t happen often). The point
is that the greater the standard deviation, the greater the variation there
is in the data.

Just like we can calculate the mean of our data, we can also calculate
the standard deviation. The standard deviation, written 𝜎, is given
by

𝜎 =
√√√
⎷

1
𝑁

𝑁−1
∑
𝑖 = 0

(𝑥𝑖 − 𝜇)2.

Let’s unpack this. First, remember the goal of this measure is to tell
us how much variation there is in the data. But variation with respect
to what? Look at the expression (𝑥𝑖 − 𝜇)2. We subtract the mean, 𝜇,
from each value in the data set 𝑥𝑖. This tells us how far the value of a
given observation is from the mean. But we care more about the distance
from the mean rather than whether a given value is above or below the
mean. That’s where the squaring comes in. When we square a positive
number we get a positive number. When we square a negative number
we get a positive number. So by squaring the difference between a given
value and the mean, we’re eliminating the sign. Then, we divide the
sum of these squared differences by the number of elements in the data
set (just as we do when calculating the mean). Finally, we take the
square root of the result. Why do we do this? Because by squaring the
differences, we stretch them, changing the scale. For example, 5 − 2 = 3,
but 52−22 = 25−4 = 21. So this last step, taking the square root, returns
the result to a scale appropriate to the data. This is how we calculate
standard deviation.2

As we calculate the summation, we perform the calculation (𝑥𝑖 − 𝜇)2.
On this account, we cannot use sum(). Instead, we must calculate this in
a loop. However, this is not too terribly complicated, and implementing
this in Python is left as an exercise for the reader.

2Strictly speaking, this is the population standard deviation, and is used if the
data set represents the entire universe of possible observations, rather than just a
sample. There’s a slightly different formula for the sample standard deviation.

280 Data analysis and presentation

Assuming we have implemented this correctly, in a function
named std_dev(), if we apply this to the data and print with
print(f"{std_dev(data):.4f}"), we get 4.6569.

How do we interpret this? Again, the standard deviation tells us how
spread out values are about the mean. Higher values mean that the data
are more spread out. Lower values mean that the data are more closely
distributed about the mean.

What practical use is the standard deviation? There are many uses,
but it’s commonly used to identify unusual or “unlikely” observations.

We can calculate the area of some portion under the normal curve.
Using this fact, we know that given a normal distribution, we’d expect to
find 68.26% of observations within one standard deviation of the mean.
We’d expect 95.45% of observations within two standard deviations of
the mean. Accordingly, the farther from the mean, the less likely an
observation. If we express this distance in standard deviations, we can
determine just how likely or unlikely an observation might be (assuming
a normal distribution). For example, an observation that’s more than
five standard deviations from the mean would be very unlikely indeed.

Range Expected fraction in range
𝜇 ± 𝜎 68.2689%
𝜇 ± 2𝜎 95.4500%
𝜇 ± 3𝜎 99.7300%
𝜇 ± 4𝜎 99.9937%
𝜇 ± 5𝜎 99.9999%

When we have real-world data, it’s not often perfectly normally dis-
tributed. By comparing our data with what would be expected if it were
normally distributed we can learn a great deal.

Returning to our dentists example, we can look for possible outliers
by iterating through our data and finding any values that are greater
than two standard deviations from the mean.

m = mean(data)
std = std_dev(data)

outliers = []
for datum in data:

if abs(datum) > m + 2 * std:
outliers.append(datum)

In doing so, we find two possible outliers—14.81, 16.95—which corre-
spond to Chile and Uruguay, respectively. This might well lead us to
ask, “Why are there so many dentists per 10,000 population in these
particular countries?”

Python’s statistics module 281

14.2 Python’s statistics module
While implementing standard deviation (either for a sample or for an
entire population) is straightforward in Python, we don’t often write
functions like this ourselves (except when learning how to write func-
tions). Why? Because Python provides a statistics module for us.

We can use Python’s statistics module just like we do with the math
module. First we import the module, then we have access to all the
functions (methods) within the module.

Let’s start off using Python’s functions for mean and population stan-
dard deviation. These are statistics.mean() and statistics.pstdev(),
and they each take an iterable of numeric values as arguments.

import csv
import statistics

data = []
with open('dentists_per_10k.csv', newline='') as fh:

reader = csv.reader(fh)
next(reader) # skip the first row
for row in reader:

data.append(float(row[1]))

print(f"{statistics.mean(data):.4f}")
print(f"{statistics.pstdev(data):.4f}")

When we run this, we see that the results for mean and standard
deviation—5.1391 and 4.6569, respectively—are in perfect agreement
with the results reported above.

The statistics module comes with a great many functions including:

• mean()
• median()
• pstdev()
• stdev()
• quantiles()

among others.

Using the statistics module to calculate quantiles
Quantiles divide a data set into continuous intervals, with each interval
having equal probability. For example, if we divide our data set into
quartiles (𝑛 = 4), then each quartile represents 1/4 of the distribution. If
we divide our data set into quintiles (𝑛 = 5), then each quintile represents
1/5 of the distribution. If we divide our data into percentiles (𝑛 = 100),
then each percentile represents 1/100 of the distribution.

You may have seen quantiles—specifically percentiles—before, since
these are often reported for standardized test scores. If your score was in
the 80th percentile, then you did better than 79% of others taking the

282 Data analysis and presentation

test. If your score was in the 95th percentile, then you’re in the top 5%
all those who took the test.

Let’s use the statistics module to find quintiles for our dentists data
(recall that quintiles divide the distribution into five parts).

If we import csv and statistics and then read our data (as above),
we can calculate the values which divide the data into quintiles thus:

quintiles = statistics.quantiles(data, n=5)
print(quintiles)

Notice that we pass the data to the function just as we did with mean()
and pstdev(). Here we also supply a keyword argument, n=5, to indicate
we want quintiles. When we print the result, we get

[0.274, 2.2359999999999998, 6.590000000000001, 8.826]

Notice we have four values, which divide the data into five equal parts.
Any value below 0.274 is in the first quintile. Values between 0.274 and
0.236 (rounding) are in the second quartile, and so on. Values above
8.826 are in the fifth quintile.

If we check the value for the United States of America (not shown
in the table above), we find that the USA has 5.99 dentists per 10,000
population, which puts it squarely in the third quartile. Countries with
more than 8.826 dentists per 10,000—those in the top fifth—are Belgium
(11.33), Chile (14.81), Costa Rica (10.58), Israel (8.88), Lithuania (13.1),
Norway (9.29), Paraguay (12.81), and Uruguay (16.95). Of course, in-
terpreting these results is a complex matter, and results are no doubt
influenced by per capita income, number and size of accredited dental
schools, regulations for licensure and accreditation, and other infrastruc-
ture and economic factors.3

Other functions in the statistics module
I encourage you to experiment with these and other functions in the
statistics module. If you have a course in which you’re expected to calcu-
late means, standard deviations, and the like, you might consider doing
away with your spreadsheet and trying this in Python!

14.3 A brief introduction to plotting with
Matplotlib

Now that we’ve seen how to read data from a file, and how to generate
some descriptive statistics for the data, it makes sense that we should
address visual presentation of data. For this we will use a third-party4

module: Matplotlib.
3I’m happy with my dentist here in Vermont, but I will say she’s booking ap-

pointments over nine months in advance, so maybe a few more dentists in the USA
wouldn’t be such a bad thing.

4i.e, not provided by Python or written by you

A brief introduction to plotting with Matplotlib 283

Matplotlib is a feature-rich module for producing a wide array of
graphs, plots, charts, images, and animations. It is the de facto standard
for visual presentation of data in Python (yes, there are some other tools,
but they’re not nearly as widely used).

Since Matplotlib is not part of the Python core library (like the math,
csv, and statistics modules we’ve seen so far), we need to install Mat-
plotlib before we can use it.

The installation process for third-party Python modules is unlike
installing an app on your phone or desktop. Some IDEs (PyCharm,
Thonny, VS Code, etc.) have built-in facilities for installing such modules.
IDLE (the Python-supplied IDE) does not have such a facility. Accord-
ingly, we won’t get into the details of installation here (since details will
vary from OS to OS, machine to machine), though if you’re the DIY type
and aren’t using PyCharm, Thonny, or VS Code, you may find Appendix
C: pip and venv helpful.

Here are some examples of plots made with Matplotlib (from the
Matplotlib gallery at matplotlib.org):

284 Data analysis and presentation

For more examples and complete (very well-written) documentation,
visit https://matplotlib.org.

14.4 The basics of Matplotlib
We’re just going to cover the basics here. Why? Because Matplotlib has
thousands of features and it has excellent documentation. So we’re just
going to dip a toe in the waters.

For more, see:

• Matplotlib website: https://matplotlib.org
• Getting started guide: https://matplotlib.org/stable/users/gettin

g_started
• Documentation: https://matplotlib.org/stable/index.html
• Quick reference guides and handouts: https://matplotlib.org/che

atsheets

https://matplotlib.org
https://matplotlib.org
https://matplotlib.org/stable/users/getting_started
https://matplotlib.org/stable/users/getting_started
https://matplotlib.org/stable/index.html
https://matplotlib.org/cheatsheets
https://matplotlib.org/cheatsheets

The basics of Matplotlib 285

The most basic basics
We’ll start with perhaps the simplest interface provided by Matplotlib,
called pyplot. To use pyplot we usually import and abbreviate:

import matplotlib.pyplot as plt

Renaming isn’t required, but it is commonplace (and this is how it’s done
in the Matplotlib documentation). We’ve seen this syntax before—using
as to give a name to an object without using the assignment operator
(=). It’s very much like giving a name to a file object when using the with
context manager. Here we give matplotlib.pyplot a shorter name plt so
we can refer to it easily in our code. This is almost as if we’d written

import matplotlib.pyplot

plt = matplotlib.pyplot

Almost.
Now let’s generate some data to plot. We’ll generate random numbers

in the interval (−1.0, 1.0).

import random

data = [0]
for _ in range(100):

data.append(data[-1])
+ random.random()
* random.choice([-1, 1]))

So now we’ve got some random data to plot. Let’s plot it.

plt.plot(data)

That’s pretty straightforward, right?
Now let’s label our 𝑦 axis.

plt.ylabel('Random numbers (cumulative)')

Let’s put it all together and display our plot.

import random
import matplotlib.pyplot as plt

data = [0]
for _ in range(100):

data.append(data[-1])
+ random.random()
* random.choice([-1, 1]))

286 Data analysis and presentation

plt.plot(data)
plt.ylabel('Random numbers (cumulative)')
plt.show()

It takes only one more line to save our plot as an image file. We call
the savefig() method and provide the file name we’d like to use for
our plot. The plot will be saved in the current directory, with the name
supplied.

The basics of Matplotlib 287

import random
import matplotlib.pyplot as plt

data = [0]
for _ in range(100):

data.append(data[-1])
+ random.random()
* random.choice([-1, 1]))

plt.plot(data)
plt.ylabel('Random numbers (cumulative)')
plt.savefig('my_plot.png')
plt.show()

That’s it. Our first plot—presented and saved to file.
Let’s do another. How about a bar chart? For our bar chart, we’ll use

this as data (which is totally made up by the author):

Flavor Servings
Cookie dough 9,214
Strawberry 3,115
Chocolate 5,982
Vanilla 2,707
Fudge brownie 6,553
Mint chip 7,005
Kale and beet 315

Let’s assume we have this saved in a CSV file called flavors.csv. We’ll
read the data from the CSV file, and produce a simple bar chart.

import csv

import matplotlib.pyplot as plt

servings = [] # data
flavors = [] # labels

with open('flavors.csv') as fh:
reader = csv.reader(fh)
for row in reader:

flavors.append(row[0])
servings.append(int(row[1]))

plt.bar(flavors, servings)
plt.xticks(flavors, rotation=-45)
plt.ylabel("Servings")
plt.xlabel("Flavor")
plt.tight_layout()

288 Data analysis and presentation

plt.show()

Voilá! A bar plot!
Notice that we have two lists: one holding the servings data, the

other holding the 𝑥-axis labels (the flavors). Instead of plt.plot() we
use plt.bar() (makes sense, right?) and we supply flavors and servings
as arguments. There’s a little tweak we give to the 𝑥-axis labels, we ro-
tate them by 45 degrees so they don’t all mash into one another and
become illegible. plt.tight_layout() is used to automatically adjust the
padding around the plot itself, leaving suitable space for the bar labels
and axis labels.

Be aware of how plt.show() behaves
When you call plt.show() to display your plot, Matplotlib creates a win-
dow and displays the plot in the window. At this point, your program’s
execution will pause until you close the plot window. When you close
the plot window, program flow will resume.

Summary
Again, this isn’t the place for a complete presentation of all the features
of Matplotlib. The intent is to give you just enough to get started. Fortu-
nately, the Matplotlib documentation is excellent, and I encourage you
to look there first for examples and help.

• https://matplotlib.org

https://matplotlib.org

Exceptions 289

14.5 Exceptions

StatisticsError

The statistics module has its own type of exception, StatisticsError.
You may encounter this if you try to find the mean, median, or mode of
an empty list.

>>> statistics.mean([])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/.../python3.10/statistics.py", line 328, in mean

raise StatisticsError('mean requires at least one data
point')

statistics.StatisticsError: mean requires at least one data
point

This is also raised if you specify less than one quantile.

>>> statistics.quantiles([3, 6, 9, 5, 1], n=0)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/.../python3.10/statistics.py", line 658,

in quantiles
raise StatisticsError('n must be at least 1')

statistics.StatisticsError: n must be at least 1

StatisticsError is actually a more specific type of ValueError.

Exceptions when using Matplotlib
There are many different exceptions that could be raised if you make
programming errors while using Matplotlib. The exception and how to fix
it will depend on context. If you encounter an exception from Matplotlib,
your best bet is to consult the Matplotlib documentation.

14.6 Exercises

Exercise 01
Try creating your own small data set (one dimension, five to ten elements)
and plot it. Follow the examples given in this chapter. Plot your data as
a line plot and as a bar plot.

Exercise 02
Matplotlib supports scatter plots too. In a scatter plot, each data point
is a pair of values, 𝑥 and 𝑦. Here’s what a scatter plot looks like.

290 Data analysis and presentation

Create your own data (or find something suitable on the internet) and
create your own scatter plot. 𝑥 values should be in one list, corresponding
𝑦 values should be in another list. Both lists should have the exact same
number of elements. If these are called xs and ys, then you can create a
scatter plot with

plt.scatter(xs, ys)

Make sure you display your plot, and save your plot as an image file.

Exercise 03
Edwina has calculated the mean and standard deviation of her data
set—measurements of quill length in crested porcupines (species: Hystrix
cristata). She has found that the mean is 31.2 cm and the standard
deviation is 7.9 cm.

a. If one of the quills in her sample is 40.5 cm, should she consider
this an unusually long quill? Why or why not?

b. What if there’s a quill that’s 51.2 cm? Should this be considered
unusually long? Why or why not?

Exercises 291

Exercise 04
Consider the two distributions shown, A and B.

a. Which of these has the greater mean?

b. Which of these has the greater standard deviation?

c. Which of these curves have the greater area under them? (hint: this
is a trick question)

Exercise 05
The geometric mean is another kind of mean used in statistics and fi-
nance. Rather than summing all the values in the data and then dividing
by the number of values, we take the product of all the values, and then,
if there are 𝑁 values, we take the 𝑁th root of the result. Typically, this
is only used when all values in the data set are positive.

We define the geometric mean:

𝛾 = (
𝑁−1
∏
𝑖 = 0

𝑥𝑖)
1
𝑁

where the ∏ symbol signifies repeated multiplication. Just as ∑ says
“add them all up”, ∏ means “multiply them all together.”

We can calculate the 𝑁th root of a number using exponentiation by
a fraction as shown. For example, to calculate the cube root of some 𝑥,
we can use x ** (1 / 3).

Implement a function which calculates the geometric mean of an arbi-
trary list of positive numeric values. You can verify your result by com-
paring the output of your function with the output of the statistics
module’s geometric_mean() function.

Chapter 15

Exception handling

We’ve seen a lot of exceptions so far:

• SyntaxError
• IndentationError
• AttributeError
• NameError
• TypeError
• IndexError
• ValueError
• ZeroDivisionError
• FileNotFoundError

These are exceptions defined by Python, and which are raised when
certain errors occur. (There are many, many other exceptions that are
outside the scope of this textbook.)

When an unhandled exception occurs, your program terminates. This
is usually an undesired outcome.

Here we will see that some of these exceptions can be handled grace-
fully using try and except—these go together, hand in hand. In a try
block, we include the code that we think might raise an exception. In
the following except block, we catch or handle certain exceptions. What
we do in the except block will depend on the desired behavior for your
program.

However, we’ll also see that some of these—SyntaxError and
IndentationError for example—can’t be handled, since these occur when
Python is first reading your code, prior to execution.

We’ll also see that some of these exceptions only occur when there’s a
defect in our code that we do not want to handle! These are exceptions
like AttributeError and NameError. Trying to handle these covers up de-
fects in our code that we should repair. Accordingly, there aren’t many
cases where we’d even want to handle these exceptions.

Sometimes we want to handle TypeError or IndexError. It’s very often
the case that we want to handle ValueError or ZeroDivisionError. It’s
almost always the case that we want to handle FileNotFoundError. Much
of this depends on context, and there’s a little art in determining which
exceptions are handled, and how they should be handled.

293

294 Exception handling

Learning objectives
• You will understand why many of the Python exceptions are raised.
• You will learn how to deal with exceptions when they are raised,

and how to handle them gracefully.
• You will learn that sometimes it’s not always best to handle every

exception that could be raised.

Terms introduced
• exception handling
• “it’s easier to ask forgiveness than it is to ask for permission”

(EAFP)
• “look before you leap” (LBYL)
• raise (an exception)
• try/except

15.1 Exceptions
By this time, you’ve seen quite a few exceptions. Exceptions occur when
something goes wrong. We refer to this as raising an exception.

Exceptions may be raised by the Python interpreter or by built-in
functions or by methods provided by Python modules. You may even
raise exceptions in your own code (but we’ll get to that later).

Exceptions include information about the type of exception which has
been raised, and where in the code the exception occurred. Sometimes,
quite a bit of information is provided by the exception. In general, a
good approach is to start at the last few lines of the exception message,
and work backward if necessary to see what went wrong.

There are many types of built-in exceptions in Python. Here are a few
that you’re likely to have seen before.

SyntaxError

When a module is executed or imported, Python will read the file, and
try parsing the file. If, during this process, the parser encounters a syntax
error, a SyntaxError exception is raised. SyntaxError can also be raised
when invalid syntax is used in the Python shell.

>>> # if requires a condition and colon
>>> if

File "<stdin>", line 1
if
^

SyntaxError: invalid syntax

Here you see the exception includes information about the error and
where the error occurred. The ^ is used to point to a portion of code
where the error occurred.

Exceptions 295

IndentationError

IndentationError is a subtype of SyntaxError. Recall that indentation
is significant in Python—we use it to structure branches, loops, and
functions. So IndentationError occurs when Python encounters a syntax
error that it attributes to invalid indentation.

if True:
x = 1 # This should be indented!
File "<stdin>", line 2

x = 1 # should be indented
^

IndentationError: expected an indented block
after 'if' statement on line 1

Again, almost everything you need to know is included in the last few
lines of the message. Here Python is informing us that it was expecting
an indented block of code immediately following an if statement.

AttributeError

There are several ways an AttributeError can be raised. You may have
encountered an AttributeError by misspelling the name of a method in
a module you’ve imported.

>>> import math
>>> math.foo # There is no such method or constant in math
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: module 'math' has no attribute 'foo'

An AttributeError is different from a SyntaxError in that it occurs
at runtime, and not during the parsing or early processing of code. An
AttributeError is only related to the availability of attributes and not
violations of the Python syntax rules.

NameError

A NameError is raised when Python cannot find an identifier. For example,
if you were to try to perform a calculation with some variable x without
previously having assigned a value to x.

>>> x + 1 # Without having previously assigned a value to x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

Any attempted access of an undefined variable will result in a
NameError.

296 Exception handling

>>> foo # Wasn't defined earlier
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'foo' is not defined

IndexError

Individual elements of a sequence can be accessed using an index into the
sequence. This presumes, of course, that the index is valid—that is, there
is an element at that index. If you try to access an element of a sequence
by its index, and there is no index, Python will raise an IndexError.

>>> lst = []
>>> lst[2] # There is no element at index 2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

This (above) fails because the list is empty and there is no element
at index 2. Hence, 2 is an invalid index and an IndexError is raised.

Here’s another example:

>>> alphabet = 'abcdefghijklmnopqrstuvwxyz'
>>> alphabet[26] # Python is 0-indexed so z has index 25
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range

TypeError

A TypeError is raised when a value of one type is expected and a dif-
ferent type is supplied. For example, sequence indices—for lists, tuples,
strings—must be integers. If we try using a float or str as an index,
Python will raise a TypeError.

>>> lst = [6, 5, 4, 3, 2]
>>> lst['foo'] # Can't use a string as an index
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: list indices must be integers or slices, not str

>>> lst[1.0] # Can't use a float as an index
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: list indices must be integers or slices, not float

Exceptions 297

Python will also raise a TypeError if we try to perform operations on
operands which are not supported. For example, we cannot concatenate
an int to a str or add a str to an int.

>>> 'foo' + 1 # Try concatenating 1 with 'foo'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

>>> 1 + 'foo' # Try adding 'foo' to 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

We cannot calculate the sum of a number and a string. We cannot
calculate the sum of any list or tuple which contains a string.

>>> sum('Add me up!') # Can't sum a string
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

>>> sum(1) # Python sum() requires an iterable of numerics
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'int' object is not iterable

By the same token, we cannot get the length of a float or int.

>>> len(1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object of type 'int' has no len()

ValueError

A ValueError is raised when the type of some argument or operand is
correct, but the value is not. For example, math.sqrt(x) will raise a
ValueError if we try to take the square root of a negative number.

>>> import math
>>> math.sqrt(-1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: math domain error

Note that dividing by zero is considered an arithmetic error, and has
its own exception (see below).

298 Exception handling

ZeroDivisionError

Just as in mathematics, Python will not allow us to divide by zero. If
we try to, Python will raise a ZeroDivisionError. Note that this occurs
with floor division and modulus as well (as they depend on division).

>>> 10 / 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

>>> 10 % 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

>>> 10 // 0
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

FileNotFoundError

We’ve seen how to open files for reading and writing. There are many
ways this can go wrong, but one common issue is FileNotFoundError.
This exception is raised when Python cannot find the specified file. The
file may not exist, may be in the wrong directory, or may be named
incorrectly.

open('non-existent file')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory:

'non-existent file'

15.2 Handling exceptions
So far, what we’ve seen is that when an exception is raised our program
is terminated (or not even run to begin with in the case of a SyntaxError).
However, Python allows us to handle exceptions. What this means is that
when an exception is raised, a specific block of code can be executed to
deal with the problem.

For this we have, minimally, a try/except compound statement. This
involves creating two blocks of code: a try block and an exception
handler—an except block.

The code in the try block is code where we want to guard against
unhandled exceptions. A try block is followed by an except block. The

Handling exceptions 299

except block specifies the type of exception we wish to handle, and code
for handling the exception.

Input validation with try/except
Here’s an example of input validation using try/except. Let’s say we
want a positive integer as input. We’ve seen how to validate input in a
while loop.

while True:
n = int(input("Please enter a positive integer: "))
if n > 0:

break

This ensures that if the user enters an integer that’s less than one, that
they’ll be prompted again until they supply a positive integer. But what
happens if the naughty user enters something that cannot be converted
to an integer?

Please enter a positive integer: cheese
Traceback (most recent call last):
File "/.../code.py", line 90, in runcode

exec(code, self.locals)
File "<input>", line 2, in <module>

ValueError: invalid literal for int() with base 10: 'cheese'

Python cannot convert 'cheese' to an integer and thus a ValueError is
raised.

So now what? We put the code that could result in a ValueError in
a try block, and then provide an exception handler in an except block.
Here’s how we’d do it.

while True:
try:

user_input = input("Enter a positive integer: ")
n = int(user_input)
if n > 0:

break
except ValueError:

print(f'"{user_input}" cannot be converted to an int!')

print(f'You have entered {n}, a positive integer.')

300 Exception handling

Let’s run this code, and try a little mischief:

Enter a positive integer: negative
"negative" cannot be converted to an int!
Enter a positive integer: cheese
"cheese" cannot be converted to an int!
Enter a positive integer: -42
Enter a positive integer: 15
You have entered 15, a positive integer.

See? Now mischief (or failure to read instructions) is handled grace-
fully.

Getting an index with try/except
Earlier, we saw that .index() will raise a ValueError exception if the
argument passed to the .index() method is not found in the underlying
sequence.

>>> lst = ['apple', 'boat', 'cat', 'drama']
>>> lst.index('egg')
Traceback (most recent call last):

File "/.../code.py", line 90, in runcode
exec(code, self.locals)

File "<input>", line 1, in <module>
ValueError: 'egg' is not in list

We can use exception handling to improve on this.

lst = ['apple', 'boat', 'cat', 'drama']
s = input('Enter a string to search for: ')
try:

i = lst.index(s)
print(f'The index of "{s}" in {lst} is {i}.')

except ValueError:
print(f'"{s}" was not found in {lst}.')

If we were to enter “egg” at the prompt, this code would print:

"egg" was not found in ['apple', 'boat', 'cat', 'drama']

This brings up the age-old question of whether it’s better to check
first to see if you can complete an operation without error, or better
to try and then handle an exception if it occurs. Sometimes these two
approaches are referred to as “look before you leap” (LBYL) and “it’s
easier to ask forgiveness than it is to ask for permission” (EAFP). Python
favors the latter approach.

Why is this the case? Usually, EAFP makes your code more readable,
and there’s no guarantee that the programmer can anticipate and write
all the necessary checks to ensure an operation will be successful.

Exceptions and flow of control 301

In this example, it’s a bit of a toss up. We could write:

if s in lst:
print(f'The index of "{s}" in {lst} is {lst.index(s)}.')

else:
print(f'"{s}" was not found in {lst}.')

Or we could write (as we did earlier):

try:
print(f'The index of "{s}" in {lst} is {lst.index(s)}.')

except ValueError:
print(f'"{s}" was not found in {lst}.')

Dos and don’ts
Do:

• Keep try blocks as small as possible.
• Catch and handle specific exceptions.
• Avoid catching and handling IndexError, TypeError, NameError.

When these occur, it’s almost always due to a defect in program-
ming. Catching and handling these exceptions can hide defects that
should be corrected.

• Use separate except blocks to handle different kinds of exceptions.

Don’t:

• Write one handler for different exception types.
• Wrap all your code in one big try block.
• Use exception handling to hide programming errors.
• Use bare except: or except Exception:—these are too general and

might catch things you shouldn’t.

15.3 Exceptions and flow of control
While it’s considered pythonic to use exceptions and to follow the rule
of EAFP (“easier to ask for forgiveness than permission”), it is unwise
to use exceptions for controlling the flow of program execution except
within very narrow limits.

Here are some rules to follow:

• Keep try and except blocks as small as possible.

• Handle an exception in the most simple and direct way possible.

• Avoid calling another function from within an except block which
might send program flow away from the point where the exception
was raised.

302 Exception handling

15.4 Exercises

Exercise 01

Important

Be sure to save your work for this exercise, as we will revisit these
in later exercises!

Here’s an example of code which raises a SyntaxError:

>>> foo bar
File "<stdin>", line 1

foo bar
^^^

SyntaxError: invalid syntax

Here’s an example of code which raises a TypeError:

>>> 1 + []
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'list'

Without using raise, write your own code that results in the following
exceptions:

a. SyntaxError
b. IndentationError
c. IndexError
d. NameError
e. TypeError
f. AttributeError
g. ZeroDivisionError
h. FileNotFoundError

Exercise 02
Now write a try/except for the following exceptions, starting with code
you wrote for exercise 01.

a. ValueError

b. ZeroDivisionError

c. FileNotFoundError

Exercise 03
SyntaxError and IndentationError should always be fixed in your code.
Under normal circumstances, these can’t be handled. NameError and

Exercises 303

AttributeError almost always arise from programming defects. There’s
almost never any reason to write try/except for these.

Fix the code you wrote in exercise 01, for the following:

a. SyntaxError

b. IndentationError

c. AttributeError

d. NameError

Exercise 04
Usually, (but not always) IndexError and TypeError are due to program-
ming defects. Take a look at the code you wrote to cause these errors in
exercise 01. Does what you wrote constitute a programming defect? If
so, fix it.

If you believe the code you wrote constitutes a legitimate case for
try/except, write try/except for each of these.

Chapter 16

Dictionaries

Dictionaries are ubiquitous, no doubt due to their usefulness and flexibil-
ity. Dictionaries store information in key/value pairs—we look up a value
in a dictionary by its key. In this chapter we’ll learn about dictionaries:
how to create them, modify them, iterate over them and so on.

Learning objectives
• You will learn how to create a dictionary.
• You will understand that dictionaries are mutable, meaning that

their contents may change.
• You will learn how to access individual values in a dictionary by

keys.
• You will learn how to iterate over dictionaries.
• You will understand that dictionary keys must be hashable.

Terms and Python keywords introduced
• del
• dictionary
• hashable
• key
• value
• view object

16.1 Introduction to dictionaries
So far, we’ve seen tuples, lists, and strings as ordered collections of ob-
jects. We’ve also seen how to access individual elements within a list,
tuple, or string by the element’s index.

305

306 Dictionaries

>>> lst = ['rossi', 'agostini', 'marquez', 'doohan', 'lorenzo']
>>> lst[0]
'rossi'
>>> lst[2]
'marquez'

>>> t = ('hearts', 'clubs', 'diamonds', 'spades')
>>> t[1]
'clubs'

This is all well and good, but sometimes we’d like to be able to use
something other than a numeric index to access elements.

Consider conventional dictionaries which we use for looking up the
meaning of words. Imagine if such a dictionary used numeric indices to
look up words. Let’s say we wanted to look up the word “pianist.” How
would we know its index? We’d have to hunt through the dictionary to
find it. Even if all the words were in lexicographic order, it would still
be a nuisance having to find a word this way.

The good news is that dictionaries don’t work that way. We can look
up the meaning of the word by finding the word itself. This is the basic
idea of dictionaries in Python.

A Python dictionary, simply put, is a data structure which associates
keys and values. In the case of a conventional dictionary, each word is a
key, and the associated definition or definitions are the values.

Here’s how the entry for “pianist” appears in my dictionary:1

pianist n. a person who plays the piano, esp. a skilled or
professional performer

Here pianist is the key, and the rest is the value. We can write this,
with some liberty, as a Python dictionary, thus:

>>> d = {'pianist': "a person who plays the piano, " \
... "esp. a skilled or professional performer"}

The entries of a dictionary appear within braces {}. The key/value
pairs are separated by a colon, thus: <key>: <value>, where <key> is a
valid key, and <value> is a valid value.

We can look up values in a dictionary by their key. The syntax is
similar to accessing elements in a list or tuple by their indices.

>>> d['pianist']
'a person who plays the piano, esp. a skilled or
professional performer'

Like lists, dictionaries are mutable. Let’s add a few more words to our
dictionary. To add a new entry to a dictionary, we can use this approach:

1Webster’s New World Dictionary of the American Language, Second College
Edition.

Introduction to dictionaries 307

>>> d['cicada'] = "any of a family of large flylike " \
... "insects with transparent wings"
>>> d['proclivity'] = "a natural or habitual tendency or " \
... "inclination, esp. toward something " \
... "discreditable"
>>> d['tern'] = "any of several sea birds, related to the " \
... "gulls, but smaller, with a more slender " \
... "body and beak, and a deeply forked tail"
>>> d['firewood'] = "wood used as fuel"
>>> d['holophytic'] = "obtaining nutrition by photosynthesis, " \
... "as do green plants and some bacteria"

Now let’s inspect our dictionary.

>>> d
{'pianist': 'a person who plays the piano, esp. a skilled or
professional performer', 'cicada': 'any of a family of large
flylike insects with transparent wings', 'proclivity': 'a
natural or habitual tendency or inclination, esp. toward
something discreditable', 'tern': 'any of several sea birds,
related to the gulls, but smaller, with a more slender body
and beak, and a deeply forked tail', 'firewood': 'wood used
as fuel', 'holophytic': 'obtaining nutrition by photosynthesis,
as do green plants and some bacteria'}

We see that our dictionary consists of key/value pairs.

key value
'pianist' 'a person who plays the piano, esp. a skilled or

professional performer'
'cicada' 'any of a family of large flylike insects with

transparent wings'
'proclivity' 'a natural or habitual tendency or inclination,

esp. toward something discreditable'
'tern' 'any of several sea birds, related to the gulls,

but smaller, with a more slender body and beak, and
a deeply forked tail'

'firewood' 'wood used as fuel'
'holophytic' 'obtaining nutrition by photosynthesis, as do green

plants and some bacteria'

We can look up any value with its key.

>>> d['tern']
'any of several sea birds, related to the gulls, but smaller,
with a more slender body and beak, and a deeply forked tail'

If we try to access a key which does not exist, this results in a KeyError.

308 Dictionaries

>>> d['bungalow']
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 'bungalow'

This is a new type of exception we haven’t seen until now.
We may overwrite a key with a new value.

>>> d = {'France': 'Paris',
... 'Mali': 'Bamako',
... 'Argentina': 'Buenos Aires',
... 'Thailand': 'Bangkok',
... 'Australia': 'Sydney'} # oops!
>>> d['Australia'] = 'Canberra' # fixed!

So far, in the examples above, keys and values have been strings. But
this needn’t be the case.

There are constraints on the kinds of things we can use as keys, but
almost anything can be used as a value.

Here are some examples of valid keys:

>>> d = {(1, 2): 'My key is the tuple (1, 2)',
100: 'My key is the integer 100',
'football': 'My key is the string "football"'}

Values can be almost anything—even other dictionaries!

>>> students = {'eporcupi': {'name': 'Egbert Porcupine',
... 'major': 'computer science',
... 'gpa': 3.14},
... 'epickle': {'name': 'Edwina Pickle',
... 'major': 'biomedical engineering',
... 'gpa': 3.71},
... 'aftoure': {'name': 'Ali Farka Touré',
... 'major': 'music',
... 'gpa': 4.00}}

>>> students['aftoure']['major']
'music'

>>> recipes = {'bolognese': ['beef', 'onion', 'sweet pepper',
... 'celery', 'parsley', 'white wine',
... 'olive oil', 'garlic', 'milk',
... 'black pepper', 'basil', 'salt'],
... 'french toast': ['baguette', 'egg', 'milk',
... 'butter', 'cinnamon',
... 'maple syrup'],

Introduction to dictionaries 309

... 'fritters': ['potatoes', 'red onion', 'carrot',

... 'red onion', 'garlic', 'flour',

... 'paprika', 'marjoram', 'salt',

... 'black pepper', 'canola oil']}

>>> recipes['french toast']
['baguette', 'egg', 'milk', 'butter', 'cinnamon', 'maple syrup']
>>> recipes['french toast'][-1]
'maple syrup'

>>> coordinates = {'Northampton': (42.5364, -70.9857),
... 'Kokomo': (40.4812, -86.1418),
... 'Boca Raton': (26.3760, -80.1223),
... 'Sausalito': (37.8658, -122.4980),
... 'Amarillo': (35.1991, -101.8452),
... 'Fargo': (46.8771, -96.7898)}

>>> lat, lon = coordinates['Fargo'] # tuple unpacking
>>> lat
46.8771
>>> lon
-96.7898

Restrictions on keys
Keys in a dictionary must be hashable. In order for an object to be
hashable, it must be immutable, or if it is an immutable container of
other objects (for example, a tuple) then all the objects contained must
also be immutable. Valid keys include objects of type int, float (OK, but
a little strange), str, bool (also OK, but use cases are limited). Tuples
can also serve as keys as long as they do not contain any mutable objects.

>>> d = {0: 'Alexei Fyodorovich', 1: 'Dmitri Fyodorovich',
... 2: 'Ivan Fyodorovich', 3: 'Fyodor Pavlovich',
... 4: 'Agrafena Alexandrovna', 5: 'Pavel Fyodorovich',
... 6: 'Zosima', 7: 'Katerina Ivanovna'}

>>> d = {True: 'if porcupines are blue, then the sky is pink',
... False: 'chunky monkey is the best ice cream'}

>>> d = {'Phelps': 23, 'Latynina': 9, 'Nurmi': 9, 'Spitz': 9,
... 'Lewis': 9, 'Bjørgen': 8}

However, these are not permitted:

310 Dictionaries

>>> d = {['hello']: 'goodbye'}
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

>>> d = {(0, [1]): 'foo'}
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

Testing membership
Just as with lists we can use the keyword in to test whether a particular
key is in a dictionary.

>>> d = {'jane': 'maine', 'wanda': 'new hampshire',
... 'willard': 'vermont', 'simone': 'connecticut'}
>>> 'wanda' in d
True
>>> 'dobbie' in d
False
>>> 'dobbie' not in d
True

16.2 Iterating over dictionaries
If we iterate over a dictionary as we do with a list, this yields the dictio-
nary’s keys.

>>> furniture = {'living room': ['armchair', 'sofa', 'table'],
... 'bedroom': ['bed', 'nightstand', 'dresser'],
... 'office': ['desk', 'chair', 'cabinet']}
...
>>> for x in furniture:
... print(x)
...
living room
bedroom
office

Usually, when iterating over a dictionary we use dictionary view ob-
jects. These objects provide a dynamic view into a dictionary’s keys,
values, or entries.

Iterating over dictionaries 311

Dictionaries have three different view objects: items, keys, and values.
Dictionaries have methods that return these view objects:

• dict.keys() which provides a view of a dictionary’s keys,
• dict.values() which provides a view of a dictionary’s values, and
• dict.items() which provides tuples of key/value pairs.

Dictionary view objects are all iterable.

Iterating over the keys of a dictionary

>>> furniture = {'living room': ['armchair', 'sofa', 'table'],
... 'bedroom': ['bed', 'nightstand', 'dresser'],
... 'office': ['desk', 'chair', 'cabinet']}
>>> for key in furniture.keys():
... print(key)
...
living room
bedroom
office

Note that it’s common to exclude .keys() if it’s keys you want, since
the default behavior is to iterate over keys (as shown in the previous
example).

Iterating over the values of a dictionary

>>> for value in furniture.values():
... print(value)
...
['armchair', 'sofa', 'table']
['bed', 'nightstand', 'dresser']
['desk', 'chair', 'cabinet']

Iterating over the items of a dictionary

>>> for item in furniture.items():
... print(item)
...
('living room', ['armchair', 'sofa', 'table'])
('bedroom', ['bed', 'nightstand', 'dresser'])
('office', ['desk', 'chair', 'cabinet'])

312 Dictionaries

Iterating over the items of a dictionary using tuple
unpacking

>>> for key, value in furniture.items():
... print(f"Key: '{key}', value: {value}")
...
Key: 'living room', value: ['armchair', 'sofa', 'table']
Key: 'bedroom', value: ['bed', 'nightstand', 'dresser']
Key: 'office', value: ['desk', 'chair', 'cabinet']

Some examples
Let’s say we wanted to count the number of pieces of furniture in our
dwelling.

>>> count = 0
>>> for lst in furniture.values():
... count = count + len(lst)
...
>>> count
9

Let’s say we wanted to find all the students in the class who are not
CS majors, assuming the items in our dictionary look like this:

>>> students =
... {'esmerelda' : {'class': 2024, 'major': 'ENSC', 'gpa': 3.08},
... 'winston': {'class': 2023, 'major': 'CS', 'gpa': 3.30},
... 'clark': {'class': 2022, 'major': 'PHYS', 'gpa': 2.95},
... 'kumiko': {'class': 2023, 'major': 'CS', 'gpa': 3.29},
... 'abeba' : {'class': 2024, 'major': 'MATH', 'gpa': 3.71}}

One approach:

>>> non_cs_majors = []
>>> for student, info in students.items():
... if info['major'] != 'CS':
... non_cs_majors.append(student)
...
>>> non_cs_majors
['esmerelda', 'clark', 'abeba']

16.3 Deleting dictionary keys
Earlier we saw that we could use list’s .pop() method to remove an
element from a list, removing either the last element in the list (the
default, when no argument is supplied), or at a specific index (if we
supply an argument).

Hashables 313

Dictionaries are mutable, and thus, like lists, they can be changed.
Dictionaries also support .pop() but it works a little differently than it
does with lists. The .pop() method for dictionaries requires a valid key
as an argument. This is because dictionaries don’t have the same sense
of linear order as a list—everything is based on keys.

So this works:

>>> d = {'foo': 'bar'}
>>> d.pop('foo')
'bar'

but this does not:

>>> d = {'foo': 'bar'}
>>> d.pop()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: pop expected at least 1 argument, got 0

Python also provides the keyword del which can be used to remove a
key from a dictionary.

>>> pets = {'fluffy': 'gerbil', 'george': 'turtle',
... 'oswald': 'goldfish', 'wyatt': 'ferret'}
>>> del pets['oswald'] # RIP oswald :(
>>> pets
{'fluffy': 'gerbil', 'george': 'turtle', 'wyatt': 'ferret'}

But be careful! If you do not specify a key, the entire dictionary will
be deleted!

>>> pets = {'fluffy': 'gerbil', 'george' : 'turtle',
... 'oswald': 'goldfish', 'wyatt': 'ferret'}
>>> del pets # oops!
>>> pets
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'pets' is not defined

Notice also that .pop() with a key supplied will return the value
associated with that key and then remove the key/value pair. del will
simply delete the entry.

16.4 Hashables
The keys of a dictionary cannot be arbitrary Python objects. In order to
serve as a key, an object must be hashable.

Without delving into too much technical detail, the reason is fairly
straightforward. We can’t have keys that might change!

314 Dictionaries

Imagine if that dictionary or thesaurus on your desk had magical keys
that could change. You’d never be able to find anything. Accordingly,
all keys in a dictionary must be hashable—and not subject to possible
change.

Hashing is a process whereby we calculate a number (called a hash)
from an object. In order to serve as a dictionary key, this hash value
must never change.

What kinds of objects are hashable? Actually most of the objects
we’ve seen so far are hashable.

Anything that is immutable and is not a container is hashable. This
includes int, float, bool, str. It even includes objects of type range
(though it would be very peculiar indeed if someone were to use a range
as a dictionary key).

What about things that are immutable and are containers? Here we’re
speaking of tuples. If all the elements of a tuple are themselves immutable,
then the tuple is hashable. If a tuple contains a mutable object, say, a
list, then it is not hashable.

We can inspect the hash values of various objects using the built-in
function, hash().

>>> x = 2
>>> hash(x)
2
>>> x = 4.11
>>> hash(x)
253642731013507076
>>> x = 'hello'
>>> hash(x)
1222179648610370860
>>> x = True
>>> hash(x)
1
>>> x = (1, 2, 3)
>>> hash(x)
529344067295497451

Now, what happens if we try this on something unhashable?

>>> x = [1, 2, 3]
>>> hash(x)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'

What happens if we try an immutable container (tuple) which con-
tains a mutable object (list)?

Counting letters in a string 315

>>> x = (1, 2, [3])
>>> hash(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Now, a tuple can contain a tuple, which may contain another tuple
and so on. All it takes is one mutable element, no matter how deeply
nested, to make an object unhashable.

>>> x = (1, 2, (3, 4, (5, 6, (7, 8, [9]))))
>>> hash(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Finally, it should go without saying that since dictionaries are muta-
ble, they are not hashable, and thus a dictionary cannot serve as a key
for another dictionary.

>>> x = {'foo': 'bar'}
>>> hash(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'dict'

16.5 Counting letters in a string
Here’s an example of how we can use a dictionary to keep track of the
number of occurrences of letters or other characters in a string. It’s com-
mon enough in many word guessing and related games that we’d want
this information.

Let’s say we have this string: “How far that little candle throws its
beams! So shines a good deed in a naughty world.”2

How would we count all the symbols in this? Certainly, separate vari-
ables would be cumbersome. Let’s use a dictionary instead. The keys in
the dictionary are the individual letters and symbols in the string, and
the values will be their counts. To simplify things a little, we’ll convert
the string to lower case before counting.

2William Shakespeare, The Merchant of Venice, Act V, Scene I (Portia).

316 Dictionaries

s = "How far that little candle throws its beams! " \
"So shines a good deed in a naughty world."

d = {}
for char in s.lower():

try:
d[char] += 1

except KeyError:
d[char] = 1

We start with an empty dictionary. Then for every character in the
string, we try to increment the value associated with the dictionary key.
If we get a KeyError, this means we haven’t seen that character yet, and
so we add a new key to the dictionary with a value of one. After this
code has run, the dictionary, d, is as follows:

{'h': 5, 'o': 6, 'w': 3, ' ': 16, 'f': 1, 'a': 7, 'r': 3,
't': 7, 'l': 4, 'i': 4, 'e': 6, 'c': 1, 'n': 4, 'd': 5,
's': 6, 'b': 1, 'm': 1, '!': 1, 'g': 2, 'u': 1, 'y': 1,
'.': 1}

So we have five ‘h’, six ‘o’, three ‘w’, and so on.
We could write a function that reports how many of a given character

appears in the string like this:

def get_count(char, d):
try:

return d[char]
except KeyError:

return 0

This function returns the count if char is in d or zero otherwise.

16.6 Exceptions

KeyError

If you try to read or pop or delete a key from a dictionary which does
not exist, a KeyError is raised. This is similar to the IndexError you’ve
seen in the cases of lists and tuples.

If you encounter a KeyError it means the specified key does not exist
in the dictionary.

Exercises 317

>>> furniture = {'living room': ['armchair', 'sofa', 'table'],
... 'bedroom': ['bed', 'nightstand', 'dresser'],
... 'office': ['desk', 'chair', 'cabinet']}
>>> furniture['kitchen']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'kitchen'

TypeError

If you try to add to a dictionary a key which is not hashable, Python
will raise a type error:

>>> d = {[1, 2, 3]: 'cheese'}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unhashable type: 'list'

Unlike IndexError which is almost always due to a programming
error—and thus we do not wish to handle such exceptions—there are
cases where we would wish to handle KeyError should it be raised. This
will depend on context.

16.7 Exercises
Exercise 01
Create a dictionary for the following data:

Student NetID Major Courses
Porcupine, Egbert eporcupi CS CS1210, CS1080,

MATH2055, ANTH1100

Pickle, Edwina epickle BIOL BIOL1450, BIOL1070,
MATH2248, CHEM1150

Quux, Winston wquux ARTS ARTS2100, ARTS2750,
CS1210, ARTH1990

Garply, Mephista mgarply ENSC ENSC2300, GEOG1170,
FS2020, STAT2870

a. What do you think should serve as keys for the dictionary?

b. Should you use a nested dictionary?

c .What are the types for student, netid, major, and courses?

318 Dictionaries

Exercise 02
Now that you’ve created the dictionary in Exercise 01, write queries for
the following. A query retrieves selected data from some data structure.
Here the data structure is the dictionary created in exercise 01. Some
queries may be one-liners. Some queries may require a loop.

1. Get Winston Quux’s major.
2. If you used NetID as a key, then write a query to get the name

associated with the NetID epickle. If you used something else as a
key, then write a query to get Edwina Pickle’s NetID.

3. Construct a list of all students taking CS1210.

Exercise 03
Dictionary keys must be unique. We cannot have duplicate keys in a
dictionary.

What do you think happens if we were to enter this into the Python
shell?

d = {'foo': 'bar', 'foo': 'baz'}

What do you think is the value of d? Guess first, then check!

Exercise 04
Create this dictionary:

d = {'foo': 'bar'}

Now pass d as an argument to a function which has a single formal
parameter, d_ Within the function modify the dictionary (mutate it), but
return None (how you modify it is up to you). What happens to d in the
outer scope?

Note: Don’t assign a new value to d_. Just mutate it by adding a key,
removing a key, changing a value, etc.

Exercise 05
Write a function that takes a string as an argument and returns a dic-
tionary containing the number of occurrences of each character in the
string.

Exercise 06
a. Write a function that takes an arbitrary dictionary and returns the

keys of the dictionary as a list.

b. Write a function that takes an arbitrary dictionary and returns the
values of the dictionary as a list.

Chapter 17

Graphs

We have looked at the dictionary data structure, which associates keys
with values, and we’ve looked at some examples and use cases. Now
that we understand dictionaries, we’re going to dive into graphs. Graphs
are a collection of vertices (nodes) connected by edges, that represent
relationships between the vertices (nodes). We’ll see that a dictionary
can be used to represent a graph.

Learning objectives
• You will learn some of the terms associated with graphs.
• You will learn how to represent data using a graph.
• You will learn about searching a graph using breadth-first search.

Terms introduced
• graph
• vertices (nodes)
• edge
• neighbor (common edge)
• adjacent
• breadth-first search

17.1 Introduction to graphs
Graphs are a very versatile data structure. They can be used to represent
game states, positions on a map with routes, people in a social network,
and so on. Here we will consider graphs that represent positions on a
map with routes and that represent friendships in a social network.

Let’s start with maps. Consider a minimal example of two towns in
Michigan, Ann Arbor and Ypsilanti.

319

320 Graphs

Here, in the language of graphs, we have two vertices (a.k.a., nodes)
representing the towns, Ann Arbor and Ypsilanti, and an edge connecting
the vertices, indicating that a route exists between them. We can travel
along this route from Ann Arbor to Ypsilanti, and from Ypsilanti to
Ann Arbor. Notice the symmetry. This is because the edge between Ann
Arbor and Ypsilanti is undirected, which is reasonable, since the highway
that connects them allows traffic in both directions.1

We refer to vertices which share a common edge as neighbors. We
also refer to vertices which share a common edge as adjacent. So in the
example above, Ann Arbor and Ypsilanti are neighbors. Ann Arbor is
adjacent to Ypsilanti, and Ypsilanti is adjacent to Ann Arbor.

Here’s a little more elaborate example:

In this example, Burlington is adjacent to St Albans, Montpelier and
Middlebury. Rutland is adjacent to Middlebury and Bennington. (Yes,
we’re leaving out a lot of detail for simplicity’s sake.)

So the question arises: how do we represent a graph in our code?
There are several ways, but what we’ll demonstrate here is what’s called
the adjacency list representation.

We’ll use a dictionary, with town names as keys and the values will
be a list of all towns adjacent to the key.

1There are what are called directed edges, like one-way streets, but we’ll only
deal with undirected edges in this text.

Searching a graph: breadth-first search 321

For example, Montpelier is adjacent to St Johnsbury, White River
Junction and Burlington, so the dictionary entry for Montpelier would
look like this:

ROUTES = {'Montpelier': ['Burlington', 'White River Junction',
'St Johnsbury']}

A complete representation of adjacencies, given the map above is:

ROUTES = {
'Burlington': ['St Albans', 'Montpelier', 'Middlebury'],
'Montpelier': ['Burlington', 'White River Junction',

'St Johnsbury'],
'White River Junction': ['Montpelier', 'Brattleboro',

'St Johnsbury'],
'Brattleboro': ['White River Junction'],
'Newport': ['St Johnsbury'],
'St Albans': ['Burlington', 'Swanton'],
'St Johnsbury': ['Montpelier', 'Newport',

'White River Junction'],
'Swanton': ['St Albans'],
'Middlebury': ['Burlington', 'Rutland'],
'Rutland': ['Middlebury', 'Bennington'],
'Bennington': ['Rutland']

}

Notice that Montpelier, St Johnsbury, and White River Junction are
all neighbors with each other. This is called a cycle. If a graph doesn’t
have any cycles, it is called an acyclic graph. Similarly, if a graph contains
at least one cycle, then it is called a cyclic graph. So, this is a cyclic graph.

17.2 Searching a graph: breadth-first search
It is often the case that we wish to search such a structure. A common
approach is to use what is called breadth-first search (BFS). Here’s how
it works (in the current context):

We keep a list of towns that we’ve visited, and we keep a queue of
towns yet to visit. Both the list of towns and the queue are of type list.
We choose a starting point (here it doesn’t matter which one), and we
add it to the list of visited towns, and to the queue. This is how we begin.

Then, in a while loop, as long as there are elements in the queue:

• pop a town from the front of the queue
• for each neighboring town, if we haven’t already visited the town:

– we append the neighboring town to the list of visited towns
– we append the neighboring town to the back of the queue

At some point, the queue is exhausted (once we’ve popped the last
one off), and we only add unvisited towns to the queue. So this algorithm
will terminate.

322 Graphs

Once the algorithm has terminated, we have a list of the visited towns,
in the order they were visited.

Needless to say, this isn’t a very sophisticated approach. For example,
we don’t consider the distances traveled, and we have a very simple graph.
But this suffices for a demonstration of BFS.

A worked example
Here’s a complete, worked example of breadth-first search. It might help
for you to go over this while checking the map (above).

Say we choose St Johnsbury as a starting point. Thus, the list of
visited towns will be St Johnsbury, and the queue will contain only St
Johnsbury. Then, in a while loop…

First, we pop St Johnsbury from the front of the queue, and we check
its neighbors. Its neighbors are Montpelier, Newport, and White River
Junction so we append Montpelier, Newport, and White River Junction
to the list of visited towns, and to the queue. At this point, the queue
looks like this:

['Montpelier', 'Newport', 'White River Junction']

At the next iteration, we pop Montpelier from the front of the queue.
Now, when we check Montpelier’s neighbors, we find Burlington, White
River Junction, and St Johnsbury. St Johnsbury has already been visited
and so has White River Junction, so we leave them be. However, we have
not visited Burlington, so we append it to the list of visited towns and
to the queue. At this point, the queue looks like this:

['Newport', 'White River Junction', 'Burlington']

At the next iteration, we pop Newport from the front of the queue.
We check Newport’s neighbors and find only St Johnsbury, so there’s
nothing to append to the queue. At this point, the queue looks like this:

['White River Junction', 'Burlington']

At the next iteration we pop White River Junction from the front
of the queue. White River Junction is adjacent to Montpelier (already
visited), Brattleboro, and St Johnsbury (already visited). So we append
Brattleboro to visited list and to the queue. At this point, the queue
looks like this:

['Burlington', 'Brattleboro']

At the next iteration, Burlington is popped from the queue. Now we
check Burlington’s neighbors, and we find St Albans, Montpelier (already
visited), and Middlebury. Montpelier we’ve already visited, but St Albans
and Middlebury haven’t been visited yet, so we append them to the list
of visited towns and to the queue. At this point, the queue looks like
this:

Searching a graph: breadth-first search 323

['Brattleboro', 'St Albans', 'Middlebury']

At the next iteration, Brattleboro is popped from the front of the
queue. Brattleboro is adjacent to White River Junction (already visited).
At this point, the queue looks like this:

['St Albans', 'Middlebury']

At the next iteration, we pop St Albans from the front of the queue.
We check St Alban’s neighbors. These are Burlington (already visited)
and Swanton. So we append Swanton to the visited list and to the queue.
At this point, the queue looks like this:

['Middlebury', 'Swanton']

At the next iteration, we pop Middlebury from the queue, and we
check its neighbors. Its neighbors are Burlington (already visited) and
Rutland. Rutland is new, so we append it to the visited list and to the
queue. At this point, the queue looks like this:

['Swanton', 'Rutland']

At the next iteration, we pop Swanton from the front of the queue.
Swanton’s only neighbor is St Albans and that’s already visited so we
do nothing. At this point, the queue looks like this:

['Rutland']

At the next iteration we pop Rutland from the front of the queue.
Rutland’s neighbors are Bennington and Middlebury. We’ve already vis-
ited Middlebury, but we haven’t visited Bennington, so we add it to the
list of visited towns and to the queue. At this point, the queue looks like
this:

['Bennington']

At the next iteration we pop Bennington. Bennington’s sole neighbor
is Rutland (already visited), so we do nothing. At this point, the queue
looks like this:

[]

With nothing added to an empty queue, the queue remains empty,
and the while loop terminates. (Remember: an empty list is falsey.) At
this point we have a complete list of all the visited towns in the order
they were visited:

St Johnsbury, Montpelier, Newport, White River Junction, Burling-
ton, Brattleboro, St Albans, Middlebury, Swanton, Rutland, and Ben-
nington.

324 Graphs

Why don’t we just iterate over the entire route map?
In the example above, the graph is connected—meaning that every town
can be reached from every other town by some route. However, this is
not always the case. One reason we don’t just iterate over all keys in
a dictionary representing routes is that if we did so, we’d discover all
towns on the map, rather than only those that can be reached from a
given starting point.

Consider highways connecting towns and cities in the Hawai’ian is-
lands. You can’t drive from Hilo to Honolulu—they’re on different is-
lands.

Sometimes we have graphs in which some vertices are not reachable
from all other vertices. This can occur in directed graphs (graphs in
which the edges have directions, like one-way streets), or in disconnected
graphs (graphs that contain vertices or components that aren’t connected
to other components).

Applications
Search algorithms on graphs have abundant applications, including solv-
ing mazes and finding routes, web crawlers, games like tic-tac-toe and
various board games, and almost anything involving a network of some
kind.

Supplemental reading
• https://en.wikipedia.org/wiki/Breadth-first_search
• https://en.wikipedia.org/wiki/Depth-first_search

https://en.wikipedia.org/wiki/Breadth-first_search
https://en.wikipedia.org/wiki/Depth-first_search

Exercises 325

17.3 Exercises

Exercise 01
Take a look at this dictionary representing a graph (using adjacency list
representation):

FRIENDS = {
'Alessandro': ['Amelia'],
'Amelia': ['Sofia', 'Emma', 'Daniel', 'Alessandro'],
'Ava': ['Mia'],
'Sofia': ['Amelia', 'Selim', 'Olivia'],
'Daniel': ['Amelia', 'Emma', 'Selim', 'Olivia'],
'Emma': ['Amelia', 'Daniel', 'Selim'],
'Selim': ['Sofia', 'Daniel', 'Emma', 'Ethan'],
'Olivia': ['Sofia', 'Ethan', 'Daniel'],
'Ethan': ['Olivia', 'Selim'],
'Amara': ['Isabella', 'Benjamin'],
'Benjamin': ['Amara', 'Isabella'],
'Isabella': ['Amara', 'Benjamin'],
'Mia': ['Ava', 'James'],
'James': ['Mia']

}

a. On a sheet of paper, perform a breadth-first search, starting with
Ethan. Write down the order in which the vertices are visited, and
revise the queue as it changes. Draw the graph if you think it will
help you. Are all people (nodes) visited by breadth-first search? If
not, why not?

b. Is there a symmetry with respect to friendships? How can we see
this in the adjacency lists?

326 Graphs

Exercise 02
Consider this graph (a portion of Western Europe; edges indicate that
one country can be reached from another by driving, without taking a
ferry or airplane; dotted lines aren’t edges—they’re only there to asso-
ciate labels with certain vertices):

a. Write the adjacency list representation of this graph using a dictio-
nary.

b. Is this graph cyclic or acyclic? Why?

c. Does it matter that countries as shown in the graph aren’t in their
exact relative positions as they would be in a map of Europe? Why
or why not?

d. Is this graph connected or disconnected?

Exercise 03 (challenge!)
In the case of undirected graphs (the only kind shown in this text) edges
do not have a direction, and thus if A is connected to B then B is con-
nected to A. We see this in the adjacency list representation: if Selim is
a friend of Emma, then Emma is a friend of Selim.

Write a function which takes the adjacency list representation of any
arbitrary graph and returns True if this symmetry is correctly represented
in the adjacency list representation and False otherwise. Such a function
could be used to validate an encoding of an undirected graph.

Appendix A

Glossary

absolute value
The absolute value of a number is its distance from the origin (0), that
is, the magnitude of the number regardless of its sign. In mathematics
this is written with vertical bars on either side of the number or variable
in question. Thus

|4| = 4
| − 4| = 4

and generally,

|𝑥| = {𝑥 𝑥 ≥ 0
−𝑥 𝑥 < 0.

The absolute value of any numeric literal, variable, or expression can be
calculated with the Python built-in, abs().

accumulator
An accumulator is a variable that’s used to hold a cumulative result
within a loop. For example, we can calculate the sum of all numbers
from 1 to 10, thus

s = 0 # s is the accumulator
for n in range(1, 11):

s += n # s is incremented at each iteration

adjacent
We say two vertices A, B, in a graph are adjacent if an edge exists in the
graph with endpoints A and B.

alternating sum
An alternating sum is a sum which alternates addition and subtraction
depending on the index or parity of the term to be summed. For example:

327

328 Glossary

s = 0
for n in range(1, 11):

if n % 2: # n is odd
s -= n # subtract n

else: # n must be even
s += n # add n

implements the alternating sum
0 − 1 + 2 − 3 + 4 − 5 + 6 − 7 + 8 − 9 + 10

or equivalently
10

∑
𝑖 =0

(−1)𝑖 𝑥𝑖.

Alternating sums appear quite often in mathematics.

argument
An argument is a value (or variable) that is passed to a function when
it is called. An argument is then assigned to the corresponding formal
parameter in the function definition. For example, if we call Python’s
built-in sum() function, we must provide an argument (the thing that’s
being summed).

s = sum([2, 3, 5, 7, 11])

Here, the argument supplied to the sum() function is the list [2, 3, 5,
7, 11]. See: formal parameter.

Most arguments that appear in this text are positional arguments, that
is, the formal parameters to which they are assigned depend on the order
of the formal parameters in the function definition. The first argument
is assigned to the first formal parameter (if any). The second argument
is assigned to the second formal parameter, and so on. The number of
positional arguments must agree with the number of positional formal
parameters, otherwise a TypeError is raised.

See also: keyword argument.

arithmetic mean
The arithmetic mean is what’s informally referred to as the average of a
set of numbers. It is the sum of all the numbers in the set, divided by
the number of elements in the set. Generally,

𝜇 = 1
𝑁

𝑁−1
∑
𝑖 = 0

𝑥𝑖.

This can be implemented in Python:

m = sum(x) / len(x)

where x is some list or tuple of numeric values.

329

arithmetic sequence
An arithmetic sequence of numbers is one in which the difference between
successive terms is a constant. For example, 1, 2, 3, 4, 5,… is an arithmetic
sequence because the difference between successive terms is the constant,
1. Other examples of arithmetic sequences:

2, 4, 6, 8, 10, …
7, 10, 13, 16, 19, 22, …
44, 43, 42, 41, 40, 39, …

Python’s range objects are a form of arithmetic sequence. The stride
(which defaults to 1) is the difference between successive terms. Example:

range(3, 40, 3)

when iterated counts by threes from three to 39.

assertion
An assertion is a statement about something you believe to be true. “At
the present moment, the sky is blue.” is an assertion (which happens to
be true where I am, as I write this). We use assertions in our code to
help verify correctness, and assertions are often used in software testing.
Assertions can be made using the Python keyword assert (note that this
is a keyword and not a function). Example:

assert 4 == math.sqrt(16)

assignment
We use assignment to bind values to names. In Python, this is accom-
plished with the assignment operator, =. For example:

x = 4

creates a name x (presuming x has not been defined earlier), and asso-
ciates it with the value, 4.

binary code
Ultimately, all instructions that are executed on your computer and all
data represented on your computer are in binary code. That is, as se-
quences of 0s and 1s.

bind / bound / binding
When we make an assignment, we say that a value is bound to a name—
thus creating an association between the two. For example, the assign-
ment n = 42 binds the name n to the value 42.

330 Glossary

In the case of operator precedence, we say that operators of higher
precedence bind more strongly than operators of lower precedence. For
example, in the expression 1 + 2 * 3, the subexpression 2 * 3 is evaluated
before performing addition because * binds more strongly than +.

Boolean connective
The Boolean connectives in Python are the keywords and, or, and not.
See: Boolean expressions, and Chapter 8 Branching.

Boolean expression
A Boolean expression is an expression with one or more Boolean variables
or literals (or variables or literals with truth value), joined by zero or
more Boolean connectives. The Boolean connectives in Python are the
keywords and, or, and not. For example:

(x1 or x2 or x3) and (not x2 or x3 or x4)

is a Boolean expression, but so is the single literal

True

It’s important to understand that in Python, almost everything has a
truth value (we refer to this as truthiness or falsiness), and that Boolean
expressions needn’t evaluate to only True or False.

branching
It is through branching that we implement conditional execution of por-
tions of our code. For example, we may wish some portion of our code
to be executed only if some condition is true. Branching in Python is
implemented with the keywords if, elif, and else. Examples:

if x > 1:
print("x is greater than one")

and

if x < 0:
print("x is less than zero")

elif x > 1:
print("x is greater than one")

else:
print("x must be between 0 and 1, inclusive")

It’s important to understand that in any given if/elif/else compound
statement, only one branch is executed—the first for which the condition
is true, or the else clause (if there is one) in the event that none of the
preceding conditions is true.

331

Try/except can be considered another form of branching. See: Excep-
tion Handling (Chapter 15).

bug
Simply put, a bug is a defect in our code. I hesitate to call syntax errors
“bugs”. It’s best to restrict this term to semantic defects in our code (and
perhaps unhandled exceptions which should be handled). In any event,
when you find a bug, fix it!

bytecode
Bytecode is an intermediate form, between source code (written by hu-
mans) and binary code (which is executed by your computer’s central
processor unit (CPU)). Bytecode is a representation that’s intended to be
efficiently executed by an interpreter. Python, being an interpreted lan-
guage, produces an intermediate bytecode for execution on the Python
virtual machine (PVM). Conversion of Python source code to intermedi-
ate bytecode is performed by the Python compiler.

call (see: invoke)
When we wish to use a previously-defined function or method, we call
the function or method, supplying whatever arguments are required, if
any. When we call a function, flow of execution is temporarily passed to
the function. The function does its work (whatever that might be), and
then flow of control and a value are returned to the point at which the
function was called. See: Chapter 5 Functions, for more details.

print("Hello, World!") # call the print() function
x = math.sqrt(2) # call the sqrt() function

Note: call is synonymous with invoke.

camel case
Camel case is a naming convention in which an identifier composed of
multiple words has the first letter of each interior word capitalized. Some-
times stylized thus: camelCase. See: PEP 8 for appropriate usage.

central tendency
In statistics, the arithmetic mean is one example of a measure of central
tendency, measuring a “central” or (hopefully) “typical” value for a data
set. Another aspect of central tendency is that values tend to cluster
around some central value (for example, mean).

comma separated values (CSV)
The comma separated values format (CSV) is a commonly used way to
represent data that is organized into rows and columns. In this format,

332 Glossary

commas are used to separate values in different columns. If commas
appear within a value, say in the case of a text string, the value is
delimited with quotation marks. Python provides a convenient module—
the csv module for reading, parsing, and iterating rows in a CSV file.

command line interface (CLI)
Command line interfaces (abbreviated CLI) are user interfaces where
the user interacts with a program by typing commands or responding to
prompts in text form, or viewing data and responses from the program
in similar format. All the programs in this book make use of a command
line interface.

comment
Strictly speaking, comments are text appearing in source code which is
not read or interpreted by the language, but instead, is solely for the
benefit of human readers. Comments in Python are delimited by the
octothorpe, #, a.k.a. hash sign, pound sign, etc. In Python, any text on
a given line following this symbol is ignored by the interpreter.

In general, it is good practice to leave comments which explain why
something is as it is. Ideally, comments should not be necessary to explain
how something is being done (as this should be evident from the code
itself).

comparable
Objects are comparable if they can be ordered or compared, that is, if
the comparison operators—==, <=, >=, <, >, and != can be applied. If so,
the operands on either side of the comparison operators are comparable.
Instances of many types can be compared among themselves (any string
is comparable to all other strings, any numeric is comparable to all other
numerics), but some types cannot be compared with other objects of
the same type. For example, we cannot compare objects of type range
or function this way. In most cases, objects of different types are not
comparable (with different numeric types as a notable exception). For
example, we cannot compare strings and integers.

compiler
A compiler is a program which converts source code into machine code,
or, in the case of Python, to bytecode, which can then be run on the
Python virtual machine.

concatenation
Concatenation is a kind of joining together, not unlike coupling of railroad
cars. Some types can be concatenated, others cannot. Strings and lists
are two types which can be concatenated. If both operands are a string,
or both operands are a list, then the + operator performs concatenation
(rather than addition, if both operands were numeric).

333

Examples:

>>> 'dog' + 'food'
'dogfood'
>>> [1, 2, 3] + ['a', 'b', 'c']
[1, 2, 3, 'a', 'b', 'c']

condition
Conditions are used to govern the behavior of while loops and if/elif/else
statements. Loops or branches are executed when a condition is true—
that is, it evaluates to True or has a truthy value. Note: Python supports
conditional expressions, which are shorthand forms for if/else, but these
are not presented in this text.

congruent
In the context of modular arithmetic, we say two numbers are congruent
if they have the same remainder with respect to some given modulus.
For example, 5 is congruent to 19 modulo 2, because 5 % 2 leaves a
remainder of 1 and 19 % 2 also leaves a remainder of 1. In mathematical
notation, we indicate congruence with the ≡ symbol, and we can write
this example as 5 ≡ 19 (mod 2). In Python, the expression 5 % 2 == 19
% 2 evaluates to True.

console
Console refers either to the Python shell, or Python input/output when
run in a terminal.

constructor
A constructor is a special function which constructs and returns an object
of a given type. Python provides a number of built-in constructors, for
example, int(), float(), str(), list(), tuple(), etc. These are often used
in Python to perform conversions between types. Examples:

• list(('a', 'b', 'c')) returns the list: ['a', 'b', 'c'].
• list('apple') ‘explodes'' the string and returns the list:[‘a’,

‘p’, ‘p’, ‘l’, ‘e’]‘.
• int(42.1) returns an integer, truncating the portion to the right of

the decimal point: 42.
• int('2001') returns the integer: 2001.
• float('98.6') returns the float: 98.6.
• tuple([2, 4, 6, 8]) returns the tuple: (2, 4, 6, 8).

Other constructors include range() and enumerate().

334 Glossary

context manager
Context managers are created using the with keyword, and are commonly
used when working with file I/O. Context managers take over some of
the work of opening and closing a file, or ensuring that a file is closed
at the end of a with block, regardless of what else might occur within
that block. Without using a context manager, it’s up to the programmer
to ensure that a file is closed. Accordingly, with is the preferred idiom
whenever opening a file.

Context managers have other uses, but these are outside the scope of
this text.

cycle (within a graph)
A cycle exists in a graph if there is more than one path of edges from
one vertex to another. We refer to a graph containing a cycle or cycles
as cyclic, and a graph without any cycles as acyclic.

delimiter
A delimiter is a symbol or symbols used to set one thing apart from
another. What delimiters are used, how they are used, and what they
delimit depend on context. For example, single-line and inline comments
in Python are delimited by the # symbol at the start and the newline
character at the end. Strings can be delimited (beginning and end) with
apostrophes, ', quotation marks, ", or triple quotation marks, """. In a
CSV file, columns are delimited by commas.

dictionary
A dictionary is a mutable type which stores data in key/value pairs, like
a conventional dictionary. Keys must be unique, and each key is associ-
ated with a single value. Dictionary values can be just about anything,
including other dictionaries, but keys must be hashable. Dictionaries are
written in Python using curly braces, with colons used to separate keys
and values. Dictionary entries (elements) are separated by commas.

Examples:

• {1: 'odd', 2: 'even'}
• {'apple': 'red', 'lime': 'green', 'lemon': 'yellow'}
• {'name': 'Egbert', 'courses': ['CS1210', 'CS2240', 'CS2250'],

'age': 19}

directory (file system)
A directory is a component of a file system which contains files, and
possibly other directories. It is the nesting of directories (containment
of one directory within another) that gives a file system its hierarchical
structure. The top-level directory in a disk drive or volume is called the
root directory.

In modern operating system GUIs, directories are visually represented
as folders, and may be referred to as folders.

335

dividend
In the context of division (including floor division, // and the modulo
operator, %), the dividend is the number being divided. For example, in
the expression 21 / 3, the dividend is 21.

divisor
In the context of division (including floor division, // and the modulo op-
erator, %), the divisor is the number dividing the dividend. For example,
in the expression 21 / 3, the divisor is 3. In the context of the modulo
operator and modular arithmetic, we also refer to this as the modulus.

driver code
Driver code is an informal way of referring to the code which drives
(runs) your program, to distinguish it from function definitions, constant
assignments, or classes defined by the programmer. Driver code is often
fenced behind the if statement: if __name__ == '__main__':

docstring
A docstring is a triple-quoted string which includes information about
a program, module, function, or method. These should not be used for
inline comments. Unlike inline comments, docstrings are read and parsed
by the Python interpreter. Example at the program (module) level:

"""
My Fabulous Program
Egbert Porcupine <eporcupi@uvm.edu>
This program prompts the user for a number and
returns the corresponding frombulation coefficient.
"""

Or at the level of a function:

def successor(n_):
"""Given some number, n_, returns its successor. """
return n_ + 1

dunder
Special variables and functions in Python have identifiers that begin
and end with two underscores. Such identifiers are referred to as dun-
ders, a descriptive portmanteau of “double underscore.” Examples include
the variable __name__ and the special name '__main__', and many other
identifiers defined by the language. These are generally used to indicate
visually that these are system-defined identifiers.

336 Glossary

dynamic typing / dynamically typed
Unlike statically typed languages (for example, C, C++, Java, Haskell,
OCaml, Rust, Scala), Python is dynamically typed. This means that we
can rebind new values to existing names, even if these values are of a
different type than were bound in previous assignments. For example, in
Python, this is A-OK:

x = 1 # now x is bound to a value of type int
x = 'wombat' # now x is bound to a value of type str
x = [3, 5, 7] # ...and now a list

This demonstrates dynamic typing—at different points in the execution
of this code x is associated with values of different types. In many other
languages, this would result in type errors.

edge (graph)
A graph consists of vertices (also called nodes) and edges. An edge con-
nects two vertices, and each edge in a graph has exactly two endpoints
(vertices). All edges in graphs in this text are undirected, meaning that
they have no direction. If an edge exists between vertices A and B, then
A is adjacent to B and B is adjacent to A.

empty sequence
The term empty applies to any sequence which contains no elements. For
example, the empty string "", the empty list [], and the empty tuple
(,)—these are all empty sequences. We refer to these using the definite
article (“the”), because there is only one such object of each type. Of
note, empty sequences are falsey.

entry point
The entry point of a program is the point at which code begins execution.
In Python, the dunder __main__ is the name of the environment where
top-level code is run, and thus indicates the entry point. Example:

"""
Some docstring here
"""

def square(x_):
return x_ * x_

This is the entry point, where execution of code begins...
if __name__ == '__main__':

x = float(input("Enter a number: "))
x_squared = square(x)
print(f"{x} squared is {x_squared}")

337

escape sequence
An escape sequence (within a string) is a substring preceded by a \ char-
acter, indicating that the following character should be interpreted liter-
ally and not as a delimiter. Example: print('The following apostrophe
isn\'t a delimiter')

Escape sequences are also used to represent special values that other-
wise can’t be represented within a string. For example, \n represents a
new line and \t represents a tab.

Euclidean division
This is the kind of division you first learned in primary school, before
you learned about decimal expansion. A calculation involving Euclid-
ian division yields a quotient and a remainder (which may be zero). In
Python, this is implemented by two separate operators, one which yields
the quotient (without decimal expansion), and the other which yields
the remainder. These are // (a.k.a. floor division) and % (a.k.a., modulo)
respectively.

So, for example, in primary school, when asked to divide 25 by 3,
you’d answer 8 remainder 1. In Python:

quotient = 25 // 3 # quotient gets 8
remainder = 25 % 3 # remainder gets 1

evaluate / evaluation
Expressions are evaluated by reducing them to a value. For example,
the evaluation of the expression 1 + 1 yields 2. The evaluation of larger
expressions proceeds by order of operator precedence or order of function
calls. So, for example,

>>> import math
>>> x = 16
>>> y = 5
>>> int(math.sqrt(x) + 4 * y + 1)
25

The call to math.sqrt() is evaluated first (yielding 4.0). The multiplica-
tion 4 * y is evaluated next (yielding 20). Then addition is performed
(4.0 + 20 + 1, yielding 25.0). Finally, the int constructor is called, and
the final evaluation of this expression is 25.

When literals are evaluated, they evaluate to themselves.

exception
An exception is an error that occurs at run time. This occurs when code
is syntactically valid, but it contains semantic defects (bugs) or receives
unexpected values. When Python detects such an error, it raises an ex-
ception. If the exception is not handled, program execution terminates.

338 Glossary

Python provides a great many built-in exceptions which help in diag-
nosing errors. Examples: TypeError, ValueError, ZeroDivisionError, etc.
Exceptions can be handled using try and except.

exception handling
Exception handling allows the programmer to anticipate the possibility
of certain exceptions that might arise during execution and provide a
fallback or means of responding to the exception should it arise. For
example, we often use exception handling when validating input from
the user.

while True:
response = input("Enter a valid number greater than zero: ")
try:

x = float(response)
if x > 0:

break
except ValueError:

print(f"Sorry I cannot convert {response} to a float!")

Exception handling should be as limited and specific as possible. For
example, you should never use a bare except: or except Exception:.

Some types of exception, for example NameError should never be han-
dled, as this would conceal a serious programming defect which should
be addressed by revising code.

expression
An expression is any syntactically valid code that can be evaluated, that
is, an expression yields a value. Expressions can be simple (for example,
a single literal) or complex (composed of literals, variables, operators,
function calls, etc).

falsey
When used as conditions or in Boolean expressions, most everything in
Python has a truth value. If something has a truth value that is treated
as if it were false, we say such a thing is falsey. Falsey things include
(but are not limited to) empty sequences, 0, and 0.0.

Fibonacci sequence
The Fibonacci sequence is a sequence of natural numbers starting with
0, 1, in which each successive element is the sum of the two preceding ele-
ments. Thus the Fibonacci sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, …
The Fibonacci sequence gets its name from Leonardo of Pisa (c. 1170–c.
1245 CE) whose nickname was Fibonacci. The Fibonacci sequence was
known to Indian mathematicians (notably Pingala) as early as 200 BCE,
but history isn’t always fair about naming these things.

339

file
A file is a component of a file system that’s used to store data. The
computer programs you write are saved as files, as are all the other doc-
uments, programs, and other resources you may have on your computer.
Files are contained in directories.

floating-point
A floating-point number is a number which has a decimal point. These
are represented differently from integers. Python has a type, float which
is used for floating-point numbers.

floor division
Floor division calculates the Euclidean quotient, or, if you prefer, the
largest integer that is less than or equal to the result of floating-point
division. For example, 8 // 3 yields 2, because 2 is the largest integer
less than 2.666…(which is the result of 8 / 3).

floor function
The floor function returns the largest integer less than or equal to the
argument provided. In mathematical notation, we write

⌊𝑥⌋
and, for example ⌊6.125⌋ = 6.

Python implements this function in the math module. Example:
math.floor(6.125) yields 6.

flow chart
A flow chart is a tool used to represent the possible paths of execution
and flow of control in a program, function, method, or portion thereof.
See: Appendix E: Flow Charts.

format specifier
Format specifiers are used within f-string replacement fields to indicate
how the interpolated content should be formatted, for example, indicat-
ing precision of floating-point numbers; aligning text left, right or center,
etc. There is a complete “mini-language” of format specifiers. Within the
replacement field, the format specifier follows the interpolated expression,
separated by a colon. Format specifiers are optional.

folder (see: directory)
Folder is synonymous with directory.

340 Glossary

f-string
f-string is short for formatted string literal. f-strings are used for string in-
terpolation, where values are substituted into replacement fields within
the f-string (with optional formatting specifiers). The syntax for an f-
string requires that it be prefixed with the letter “f”, and replacement
fields appear within curly braces. For example, f"The secret number is
{num}." In this case, the replacement field is {num}, and the string rep-
resentation of the value associated with the identifier num is substituted
into the string. So, if we had num = 42, then this string becomes “The
secret number is 42.”

function
In Python, a function is a named block of code which performs some
task or returns some value. We distinguish between the definition of a
function, using the keyword def, and calls to the function, which result in
the function being executed and then returning to the point at which it
was called. Functions may have zero or more formal parameters. Formal
parameters receive arguments when the function is called.

All Python functions return a value (the default, if there is no explicit
return statement, is for the function to return None).

See: Chapter 5 Functions.

graph
A graph consists of a set of vertices and a set of edges. Trivially, the
empty graph is one with no vertices and thus no edges. A graph with
two or more vertices may include edges (assuming we exclude self-edges
which is common). An edge connects two vertices.

Graphs are widely used in computer science to represent networks of
all kinds as well as mathematical and other objects.

graphical user interface
A graphical user interface (abbreviated GUI, which is pronounced
“gooey”) is an interface with graphical elements such as windows, but-
tons, scroll bars, input fields, and other fancy doo-dads. These are dis-
tinguished from command line interfaces, which lack these elements and
are text based.

hashable
Dictionary keys must be hashable. Internally, Python produces a hash
(a number) corresponding to each key in a dictionary and uses this to
look up elements in the dictionary. In order for this to work, such hashes
must be stable—they may not change. Accordingly, Python disallows the
use of non-hashable objects as dictionary keys. This includes mutable
objects (lists, dictionaries) or immutable containers of mutable objects
(for example, a tuple containing a list). Most other objects are hashable:
integers, floats, strings, etc.

341

heterogeneous
Heterogeneous means “of mixed kind or type”. Python allows for heteroge-
neous lists or tuples, meaning that these can contain objects of different
types. For example, this is just fine in Python: ['a', 42, False, [x],
101.9].

identifier
An identifier is a name we give to an object in Python. For many types,
we give a name by assignment. Example:

x = 1234567

gives the value 1234567 the name (identifier) x. This allows us to refer
to the value 1234567 in our code by its identifier, x.

print(x)
z = x // 100
etc

We give identifiers to functions using the def keyword.

def successor(n):
return n + 1

Now this function has the identifier (name) successor.
For restrictions on identifiers, see the Python documentation at https:

//docs.python.org/3/reference/lexical_analysis.html (section 2.3.
Identifiers and keywords).

immutable
If an object is immutable it means that the object cannot be changed.
In Python, int, float, str, and tuple are all immutable types. It is true
that we can reassign a new value to a variable, but this is different from
changing the value itself.

import
We import a module for use in our own code by using Python’s import
keyword. For example, if we wish to use the math module, we must first
import it thus:

import math

impure functions
Impure functions are functions with side effects. Side effects include read-
ing from or writing to the console, reading from or writing to a file, or
mutating (changing) a non-local variable. See: pure function.

https://docs.python.org/3/reference/lexical_analysis.html
https://docs.python.org/3/reference/lexical_analysis.html

342 Glossary

incremental development
Incremental development is a process whereby we write, and presumably
test, our programs in small increments.

index / indices
All sequences have indices (the plural of index). To each element in the
sequence, there corresponds an index. We can use an index to access
an individual element within a sequence. For this we use square bracket
notation (which is distinct from the syntax used to create a list). For
example, given the list

>>> lst = ['dog', 'cat', 'gerbil']

we can access individual elements by their index. Python is (like the
majority of programming languages) zero-indexed so indices start at zero.

>>> lst[0]
'dog'
>>> lst[2]
'gerbil'
>>> lst[1]
'cat'

Lists, being mutable, support indexed writes as well as indexed reads,
so this works:

>>> lst[2] = 'hamster'

But this won’t work with tuples or strings (since they are immutable).

I/O
I/O is short for input/output. This may refer to console I/O, file I/O, or
some other form of input and output.

instance / instantiate
An instance is an object of a given type once created. For example, 1 is
an instance of an object of type int. More often, though, we speak of
instances as objects returned by a constructor. For example, when using
the csv module, we can instantiate CSV reader and writer objects by
calling the corresponding constructors, csv.reader() and csv.writer().
What are returned by these constructors are instances of the correspond-
ing type.

integrated development environment (IDE)
Integrated development environments are convenient (but not essential)
tools for writing code. Rather than a mere text editor, they provide

343

syntax highlighting, hints, and other facilities for writing, testing, de-
bugging, and running code. Python provides its own IDE, called IDLE
(integrated development and learning environment) and there are many
commercial or open source IDEs: Thonny (worth a look if you’re a be-
ginner), JetBrains Fleet, JetBrains PyCharm, Microsoft VS Code, and
many others.

interactive mode
Interactive mode is what we’re using when we’re interacting at the
Python shell. At the shell, you’ll see the Python prompt >>>. Work at the
shell is not saved—so it’s suitable for experimenting but not for writing
programs. See: script mode, below.

interpolation
In this text, when we mention interpolation, we’re always talking about
string interpolation (and not numeric interpolation or frame interpola-
tion). See: string interpolation.

interpreter
An interpreter is a program that executes some form of code without it
first being compiled into binary machine code. In Python, this is done
by the Python interpreter, which interprets bytecode produced by the
Python compiler.

invoke (see: call)
Invoke is synonymous with call.

iterable / iterate
An iterable object is one we may iterate, that is, it is an object which
contains zero or more elements, which are ordered and can be taken one
at a time. A familiar form of iteration is dealing from a deck of cards.
The deck contains zero or more elements (52 for a standard deck). The
deck is ordered—which doesn’t mean the cards are sorted, it just means
that each card has a unique position within the deck (depending on how
the deck is shuffled). If we were to turn over the cards from the top of
the deck one at a time, until there were no more cards left, we’d have
iterated over the deck. At the first iteration, we might turn over the six of
clubs. At the second iteration, we might turn over the nine of diamonds.
And so on. That’s iterating an iterable.

Iterables in Python include objects of type str, list, tuple, dict,
range, and enumerate (there are others as well). When we iterate these
objects, we get one element at a time, in the order they appear within
the object.1 When we iterate in a loop, unless there are specific exit

1Dictionaries are a bit of a special case here, since the order in which elements
are added to a dictionary is not necessarily the order in which they appear when
iterating, but there is an underlying order. Moreover, Python does provide an Or-

344 Glossary

conditions (for example, return or break) iteration continues until the
iterable is exhausted (there are no more elements remaining to iterate).
Going back to the example of our deck of cards, once we’ve turned over
the 52nd card, we’ve exhausted the deck, there’s nothing left to turn
over, and iteration ceases.

keyword
Certain identifiers are reserved by the syntax of any language as key-
words. Keywords always have the same meaning and cannot be changed
by the user. Python keywords we’ve seen in this text are: False, None,
True, as, assert, break, def, del, elif, else, except, for, if, import, in,
not, or, pass, return, try, while, and with. Feel free to try redefining any
of these at the Python shell—you won’t succeed.

keyword argument
A keyword argument is an argument provided to a function which is
preceded by the name. (Note: keyword arguments have absolutely noth-
ing to do with Python keywords.) Keyword arguments are specified in
the function definition. Defining functions with keyword arguments is
not covered in this text, but there are a few instances of using keyword
arguments, notably:

1. The optional end keyword argument to the print() function, which
allows the user to override the default ending of printed strings
(which is the newline character, \n).

2. The optional newline keyword argument to the open() function
(which is a little hack to prevent ugly behavior on certain Windows
machines).

Keyword arguments, if any, always follow positional arguments.

lexicographic order
Lexicographic order is how Python orders strings and certain other type
by default when sorting. This is, essentially, how strings would appear
if in a conventional dictionary. For example, when sorting two words,
the first letters are compared. If the first letters are different, then the
word which contains the first letter which appears earlier in the alphabet
appears before the other in the sort. If the first letters are the same, then
the second letters are compared, and so on. If the number of letters is
different, but all letters that can be compared are the same, then the
shorter word appears before the other in the sort. So, for example the
word 'sort' would appear before the word 'sorted' in a sorted list of
words.

deredDict type (provided by the collections module) which preserves the order of
addition when iterating. But these are minor points.

345

list
A list (type list) is a mutable container for other objects. Lists are
sequences, meaning that their contents are ordered (each object in the
list has a specific position within the list). Lists are iterable, meaning
that we can iterate over them in a for loop. We can create a list by
assigning a list literal to a variable:

cheeses = ['gouda', 'brie', 'mozzarella', 'cheddar']

or we may create a list from some other iterable object using the list
constructor:

This creates the list ['a', 'b', 'c']
letters = list(('a', 'b', 'c'))
This creates the list ['w', 'o', 'r', 'd']
letters = list('word')

The list constructor can also be used to make a copy of a list.

literal
A literal is an actual value of a given type. 1 is a literal of the int type.
'muffin' is a literal of the str type. ['foo', 'bar', 123] is a literal of
the list type. During evaluation, literals evaluate to themselves.

local variable
A local variable is one which is defined within a limited scope. The local
variables we’ve seen in this text are those created by assignment within
a function.

loop
A loop is a structure which is repeated zero or more times, depending
on the condition if it’s a while loop, or depending on the iterable being
iterated if it’s a for loop. break and (in some cases) return can be used
to exit a loop which might otherwise continue.

Python supports two kinds of loops: while loops which continue to
execute as long as some condition is true, and for loops which iterate
some iterable.

Matplotlib
Matplotlib is a widely used library for creating plots, animations, and
other visualizations of data in Python. It is not part of the Python stan-
dard library, and so it must be installed before it can be used.

For more, see: https://matplotlib.org.

https://matplotlib.org

346 Glossary

method
A method is a function which is bound to objects of a specific type.2 For
example, we have list methods such as .append(), .pop(), and .sort(),
string methods such as .upper(), .capitalize(), and .strip(), and so
on. Methods are accessed by use of the dot operator (as indicated in the
identifiers above). So to sort a list, lst, we use lst.sort(); to remove and
return the last element from a non-empty list, lst, we use lst.pop(); to
return a capitalized copy of a string, s, we use s.capitalize(); and so
on.

module
A module is a collection of Python objects and code. Examples include
the math module, the csv module, and the statistics module. In order to
use a module, it must be imported, for example, import math. Imported
modules are given namespaces, and we access functions within a module
using the dot operator. For example, when importing the math module,
the namespace is math and we access a function within that namespace
thus: math.sqrt(2), as one example.

You can import programs you write yourself if you wish to reuse
functions written in another program. In cases like this, your program
can be imported as a module.

modulus
When using the modulo operator, we refer to the second operand as the
modulus. For example, in the case of 23 % 5 the modulus is 5.

See also: Euclidean division and congruent.

Monte Carlo
Monte Carlo method makes use of repeated random sampling (from some
distribution), in order to solve certain classes of problems. For example,
we can use the Monte Carlo method to approximate 𝜋. The Monte Carlo
method is widely used in physics, economics, operations management,
and many other domains.

mutable
An object (type) is mutable if it can be changed after it’s been created.
Lists and dictionaries are mutable, whereas objects of type int, float,
str and tuple are not.

name (see: identifier)
Name is synonymous with identifier.

2Strictly speaking, a method is a function defined with a class.

347

namespace
Namespaces are places where Python objects are stored, and these are
very much like but not identical to dictionaries. For example, like dictio-
nary keys, identifiers within a namespace are unique (you can’t have two
different variables named x in the same namespace).

Most often you’re working in the global namespace. However, func-
tions, and modules you import have their own namespaces. In the case of
functions, a function’s namespace is created when the function is called,
and destroyed when the function returns. In the case of modules, we re-
fer to elements within a module’s namespace using the dot operator (see:
Module).

node (graph; see: vertex)
In the context of graphs, node and vertex are synonymous.

object
Pretty much anything in Python that’s not a keyword or operator or
punctuation is an object. Every object has a type, so we have objects of
type int, objects of type str, and so on. Functions are objects of type
function.

If you learn about object-oriented programming you’ll learn how to
define your own types, and instantiate objects of those types.

operator
An operator is a special symbol (or combination of symbols) that takes
one or more operands and performs some operation such as addition,
multiplication, etc., or some kind of comparison. Operators include (but
are not limited to) +, -, *, **, /, //, %, =, ==, > <, >=, <=, and !=. Operators
that have a single operand are called unary operators, for example, unary
negation. Operators that take two operands are called binary operators.

Some operators perform different operations depending on the type
of their operands. This is called operator overloading. Example: If both
operands are numeric, + performs addition; if both operands are strings,
or both operands are lists, + performs concatenation.

parameter (and formal parameter)
A function definition may include one or more parameter (also called
formal parameter). These parameters provide names for arguments when
the function is called. For example:

def square(x):
return x * x

In this example, x is the formal parameter, and in order to call the
function we must supply a corresponding argument.

348 Glossary

y = square(12)
y = square(some_variable)

The examples above show function calls supplying arguments which are
assigned to the formal parameter in the function definition.

Formal parameters exist only within a functions namespace (which is
destroyed upon return). See: namespace.

PEP 8
PEP 8 is the official Python style guide. See: https://peps.python.org/
pep-0008/

pseudo-random
It is impossible for a computer to produce a truly random number (what-
ever that might actually be). Instead, they can produce pseudo-random
numbers which appear random and approximate certain distributions.
Pseudo-random number generation is implemented in Python’s random
module. See: Chapter 12 Randomness, games, and simulations, for more.

pure function
A pure function is a function without side effects. Furthermore, the out-
put of a pure function (the value returned), depends solely on the argu-
ment(s) supplied and the function definition, and given the same argu-
ment a pure function will always return precisely the same result. In this
regard, pure functions are akin to mathematical functions. See: impure
function.

quantile
In statistics, a quantile is a set of points which divide a distribution or
data set into intervals of equal probability. For example, if we divide our
data into quartiles (a quantile of four parts), then each of the four parts
has equal probability. Note that if dividing into 𝑛 parts we need 𝑛 − 1
values to do so.

Some quantiles have special names. For example, we call the value that
divides a distribution, sample or population into two equally probable
parts a median. If we divide into 100 parts we call that percentiles.

quotient
A quotient is the result of division, whether floor division or floating-
point division. In the case of / and //, the value yielded is called the
quotient.

random walk
A random walk is a mathematical object which describes a path in some
space (say, the integers) taken by a repeated random sequence of steps.

https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

349

For example, if the space in question is the integers, if we start at zero, we
could take a random walk by repeatedly flipping a fair coin and adding
one if the toss comes up heads and subtracting one if the toss comes up
tails.

A random walk needn’t be constrained to a single dimension. For
example, we could model the motion of a particle suspended in a fluid
(Brownian motion) by a random walk in three-dimensional space.

Random walks are used in modeling many phenomena in engineering,
physics, chemistry, ecology, economics, and other domains.

read-evaluate-print loop (REPL)
A read-evaluate-print loop is an interactive interface which allows a user
to type commands or expressions at a prompt, have them performed
or evaluated, and then see the result printed to the console. This is
performed in a loop, allowing the user to continue indefinitely until they
choose to terminate the session. The Python shell is an example.

remainder
The remainder is the quantity left over after performing Euclidean (floor)
division. The remainder of such an operation must be in the interval
[0, 𝑚) where 𝑚 is the divisor (or modulus). Notice that this is a half-
open interval. For example if we divide 31 by 6, the remainder is 1. This
is implemented in Python with the modulo operator, %. See also: modulo,
and relevant sections in Chapter 4.

replacement field
Within an f-string, a replacement field indicates where expressions are
to be interpolated within the string. Replacement fields are delimited by
curly braces. Example: f"Hello {name}, it's nice to meet you!"

representation error
Representation error of floating-point numbers is the inevitable result
of the fact that the real numbers are infinite and the representation of
numbers in a computer is finite—there are infinitely more real numbers
than can be represented on a computer using a finite number of bits.

return value
All Python functions return a value, and we call this the return value. For
example, math.sqrt() returns the square root of the argument supplied
(with some restrictions). As noted, all Python functions return a value,
though in some cases the value returned is None. Functions which return
None include (but are not limited to) print() and certain list methods
which modify a list in place (for example, .append(), .sort()).

350 Glossary

rubberducking
Rubberducking is a process whereby a programmer tries to explain their
code to a rubber duck, and in so doing (hopefully) solves a problem or
realizes what needs to be done in order to fix a bug. Rubber ducks are
particularly useful in this respect in that they listen without interruption,
and, not being too bright, they require the simplest possible explanation
from the programmer. If you get stuck, talk to the duck!

run time
Run time (or sometimes runtime) refers to the time at which a program
is run.

scope
Scope refers to the visibility or lifetime of a name (or identifier). For ex-
ample, variables first defined in assignment statements within a function
or formal parameters of a function are local to that function, and when
the function returns and its namespace is destroyed such local variables
are out of scope.

We often refer to inner scope as the scope within the body of a function
or method, and outer scope to the code outside the body of a function.

See also: Chapter 5 Functions, and glossary entry for namespace.

script mode
Script mode refers to the mode of operation at work when we run a
program that we’d previously written and saved. This is distinct from
interactive mode which takes place in the Python shell.

seed
A seed is a starting point for calculations used to generate a pseudo-
random number (or sequence of pseudo-random numbers). Usually, when
using functions from the random module, we allow the random number
generator to use the seed provided by the computer’s operating system
(which is designed to be as unpredictable as possible). Sometimes, how-
ever, and especially in cases where we wish to test code which includes
the use of pseudo-random numbers, we explicitly set the seed to a known
value. In doing so, we can reproduce the sequence of pseudo-random num-
bers. See: Chapter 12 Randomness, games, and simulations.

semantics
Semantics refers to the meaning of our code as distinct from the syn-
tax required by the language. Bugs are defects of semantics—our code
doesn’t mean (or do) what we intend it to mean (or do).

351

sequence unpacking
Sequence unpacking is a language feature which allows us to unpack val-
ues within a sequence to individual variables. Examples:

>>> lst = [1, 2, 3]
>>> a, b, c = lst
>>> a
1
>>> b
2
>>> c
3
>>> coordinates = (44.47844, -73.19758)
>>> lat, lon = coordinates
>>> lat
44.47844
>>> lon
-73.19758

In order for sequence unpacking to work, there must be exactly the
same number of variables on the left-hand side of the assignment operator
as there are elements to unpack in the sequence on the right-hand side.
Accordingly, sequence unpacking is not useful (or perhaps impossible) if
there are a large number of elements to be unpacked or the number of
elements is not known. This is why we see examples of tuple unpacking
more than we do of list unpacking (since lists are mutable, we can’t
always know how many elements they contain).

Tuple unpacking is the preferred idiom in Python when working with
enumerate(). It is also handy for swapping variables.

shadowing
Shadowing occurs when we use the same identifier in two different scopes,
with the name in the inner scope shadowing the name in the outer scope.
In the case of functions, which have their own namespace, shadowing
is permitted (it’s syntactically legal) and Python is not confused about
identifiers. However, even experienced programmers are often confused by
shadowing. It not only affects the readability of the code, but it can also
lead to subtle defects that can be hard to pin down and fix. Accordingly,
shadowing is discouraged (this is noted in PEP 8).

Here’s an example:

def square(x):
x = x * x
return x

if __name__ == '__main__':
x = float(input("Enter a number and I'll square it: "))
print(square(x)

352 Glossary

One confusion I’ve seen among students arises from using the same name
x. For example, thinking that because x is assigned the result of x * x
in the body of the function, that the return value is unnecessary:

def square(x):
x = x * x
return x

if __name__ == '__main__':
x = float(input("Enter a number and I'll square it: "))
square(x)
print(x) # this prints the x here from the outer scope!

The first example, above, is correct (despite shadowing) and the program
prints the square of the number entered by the user. In the second ex-
ample, however, the program does not print the square of the number
entered by the user—instead it prints the number that was originally
entered by the user.3

side effect
A side effect is an observable behavior of a function other than simply
returning a result. Examples of side effects include printing or prompting
the user for information, or mutating a mutable object that’s been passed
to the function (which affects the object in the outer scope).

Whenever writing a function, any side effects should be included by
design and never inadvertently. Hence, pure functions are preferred to
impure functions wherever possible.

slice / slicing
Python provides a convenient notation for extracting a subset from a
sequence. This is called slicing. For example, we can extract every other
letter from a string:

>>> s = 'omphaloskepsis'
>>> s[::2]
'opaokpi'

We can extract the first five letters, or the last three letters:

>>> s[:5]
'ompha'
>>> s[-3:]
'sis'

3Yeah, OK, if the user enters 0 or 1, the program will print the square of the
number, but as they say, even a broken clock tells the right time twice a day! That’s
not much consolation, though when the user enters 3 and expects 9 as a result.

353

We call the result of such operations slices. In general, the syntax is
s[<start>:<stop>:<stride>], where s is some sequence. As indicated in
the above examples, stride is optional.

See: Chapter 10 Sequences for more.

snake case
Snake case is a naming convention in which all letters are lower case, and
words are separated by underscores (keeping everything down low, like a
snake slithering on the ground). Your variable names and function names
should be all lower case or snake case. Sometimes stylized as snake_case.

See: PEP 8.

standard deviation
Standard deviation is a measure of variability in a distribution, sample or
population. Standard deviation is calculated with respect to the mean.

See: Chapter 14 Data analysis and presentation, for details on how
standard deviation is calculated.

statement
‘A statement is either an expression or one of several constructs with
a keyword, such asif,whileorfor''.\footnote{Source: Python Language
Reference}\index{statement} Examples include assignment statements,
branching statements, loop control statements, andwithstatements. A
statement may, however, contain an expression, for exampleif x > 0:ory
= 2 * x + 3‘.

For example, consider a simple assignment statement:

>>> x = 1
>>>

Notice that nothing is printed to the console after making the assignment.
This is because x = 1 is a statement and not an expression. Expressions
have evaluations, but statements do not.

Don’t confuse matters by thinking, for example, that the control state-
ment of a while loop has an evaluation. It does not. It is true that the
condition must be an expression, but the control statement itself does
not have an evaluation (nor do if statements, elif statements, etc.).

static typing / statically typed
Some languages (not Python) are statically typed. In the case of static
typing the type of all variables must be known at compile time and while
the value of such variables may change, their types cannot. Examples
of statically typed languages: C, C++, Haskell, OCaml, Java, Rust, Go,
etc.

354 Glossary

stride
Stride refers to the step size in the context of range objects and slices.
In both cases, the default is 1, and thus can be excluded by the syntax.
For example, both x[0:10] and range(0, 10) are syntactically valid. If,
however, we wish to use a different stride, we must supply the argument
explicitly, for example, x[0:10:2] and range(0, 10, 2).

string
A string is a sequence, an ordered collection of characters (or more pre-
cisely Unicode code points).

string interpolation
String interpolation is the substitution of values into a string containing
some form of placeholder. Python supports more than one form of string
interpolation, but most examples given in this text make use of f-strings
for string interpolation. There are some use cases which justify the use
of earlier, so-called C-style string interpretation, but f-strings have been
the preferred method for most other use cases since their introduction
in 2002 with Python 3.6.

summation
A summation (in mathematical notation, with ∑) is merely the addition
of all terms in some collection (list, tuple, etc.). Sometimes, a summation
is nothing more than adding a bunch of numbers. In such cases, Python’s
built-in sum() suffices. In other cases, it is the result of some calculation
which must be summed, say, for example, summing the squares of all
numbers in some collection. In cases like this, we implement the summa-
tion in a loop.

syntax
The syntax of a programming language is the collection of all rules which
determine what is permitted as valid code. If your code contains syntax
errors, a SyntaxError (or subclass thereof) is raised.

terminal
Most modern operating systems provide a terminal (or more strictly
speaking a terminal emulator) which provides a text-based command
line interface for issuing commands.

The details of how to open a terminal window will vary depending on
your operating system.

top-level code environment
The top-level code environment is where top-level code is executed. We
specify the top-level code environment (perhaps unwittingly) when we
run a Python program (either from the terminal or within an IDE). We

355

distinguish the top-level environment from other modules which we may
import as needed to run our code.

See: entry point, and Chapter 9 Structure, development, and testing.

truth value
Almost everything (apart from keywords) in Python has a truth value
even if it is not strictly a Boolean or something that evaluates to a
Boolean. This means that programmers have considerable flexibility in
choosing conditions for flow of control (branching and loop control).

For example, we might want to perform operations on some list, but
only if the list is non-empty. Python obliges by treating a non-empty as
having a “true” truth value (we say it’s truthy) and by treating an empty
list as something “false” or “falsey.” Accordingly, we can write:

if lst:
Now we know the list is not empty and we can
do whatever it is we wish to do with the
elements of the list.

See: Chapter 8 Branching and Boolean expressions, especially sections
covering truthy and falsey.

truthy
In Python, many things are treated as if they evaluated to True when
used as conditions in while loops or branching statements. We call such
things truthy. This includes numerics with non-zero values, and any non-
empty sequence, and many other objects.

tuple
A tuple is an immutable sequence of objects. They are similar to lists in
that they can contain heterogeneous elements (or none at all), but they
differ from lists in that they cannot be changed once created.

See: Chapter 10 Sequences for details.

type
Python allows for many different kinds of object. We refer to these
kinds as types. We have integers (int), floating-point numbers (float),
strings (str), lists (list), tuples (tuple), dictionaries (dict), functions
(function), and many other types. An object’s type determines not just
how it is represented internally in the computer’s memory, but also what
kinds of operations can be performed on objects of various types. For ex-
ample, we can divide one number by another (provided the divisor isn’t
zero) but we cannot divide a string by a number or by another string.

356 Glossary

type inference
Python has limited type inference, called “duck typing” (which means if
it looks like a duck, and quacks like a duck, chances are pretty good it’s
a duck). So when we write

x = 17

Python knows that the identifier x has been assigned to an object of type
int (we don’t need to supply a type annotation as is required in, say, C
or Java).

However, as noted in the text, Python doesn’t care a whit about the
types of formal parameters or return values of functions. Some languages
can infer these types as well, and thus can ensure that programmers can’t
write code that calls a function with arguments of the wrong type, or
returns the wrong type from a function.

Unicode
Unicode is a widely-used standard for encoding symbols (letters, glyphs,
and others). Python has provided full Unicode support since version 3.0,
which was released in 2008. For purposes of this textbook, it should suf-
fice that you understand that Python strings can contain letters, letters
with diacritic marks (accents, umlauts, etc.), letters from different al-
phabets (from Cyrillic to Arabic to Thai), symbols from non-alphabetic
writing systems (Chinese, Japanese, hieroglyphs, Cuneiform, Cherokee,
Igbo), mathematical symbols, and a tremendous variety of bullets, ar-
rows, icons, dingbats—even emojis!

unpacking
See: sequence unpacking.

variable
Answering the question, What is a variable? can get a little thorny. I
think it’s most useful to think of a variable as a name bound to a value
forming a pair—two things, tightly connected.

Take the result of this assignment

animal = 'porcupine'

Is the variable just the name, animal? No. Is the variable just the
value, 'porcupine'? No. It really is these two things together: a name
attached to a value.

Accordingly, we can speak of a variable as having a name and a value.
What’s the name of this variable? animal.
What’s the value of this variable? 'porcupine'.
We sometimes speak of the type of a variable, and while names do not

have types in Python, values do.

357

vertex (graph)
As noted elsewhere, a graph consists of a set of vertices (the plural of
vertex), and a set of edges (which connect vertices).

If we were to represent a highway map with a graph, the cities and
towns would be represented by vertices, and the highways connecting
them would be the edges of the graph.

Appendix B

Mathematical notation

Note: What follows is mathematical notation used in this book, and
should not be confused with language elements of Python.

An ellipsis, …, can be read as “and so on.” For example, 1, 2, 3, … , 100
denotes the list of all numbers from 1 to 100, and 1 + 2 + 3 + ⋯ + 100
denotes the sum of all integers from 1 to 100 (inclusive).

Braces are used to denote sets, for example, {4, 12, 31} is the set con-
taining the elements 4, 12, and 31.

∈ denotes membership in a set. For example, 4 ∈ {4, 12, 31}.
∉ is used to indicate that some object is not an element of some set.

For example, 7 ∉ {4, 12, 31}.
ℕ denotes the set of all natural numbers, that is, 0, 1, 2, 3, …
ℤ denotes the set of all integers, that is, … − 2, −1, 0, 1, 2, …
ℝ denotes the set of all real numbers. Unlike the integers, real numbers

can be used to measure continuous quantities.
Sometimes we describe a set by stating the properties that must hold

for its members. In such cases, we use the vertical bar, |, which can be
read “such that.” For example, {𝑥 ∈ ℝ | 𝑥 ≥ 0} is the set of all real
numbers greater than or equal to zero.

ℚ is the set of all rational numbers, that is, ℚ = { 𝑎
𝑏 | 𝑎, 𝑏 ∈ ℤ, 𝑏 ≠ 0}.

≡ denotes congruence. We write 𝑎 ≡ 𝑏 (mod 𝑚) to indicate that 𝑎 is
congruent to 𝑏 {modulo} 𝑚. For example, 5 ≡ 1 (mod 2), and 72 ≡ 18
(mod 9).

∘ is the composition operator. For example, 𝑓 ∘ 𝑔 is the composition of
functions 𝑓 and 𝑔. With this notation, composition is performed right-
to-left, so it may be helpful to read 𝑓 ∘ 𝑔 as “f applied after g.”

Square brackets denote closed intervals, the elements of the interval
usually determined by context. For example, [0, 12] = {𝑛 ∈ ℤ | 0 ≤ 𝑛 ≤
12} and [𝜋, 2𝜋] = {𝑥 ∈ ℝ | 𝜋 ≤ 𝑥 ≤ 2𝜋}.

Parentheses denote open intervals—those in which the endpoints are
not included. For example, (0, 12) = {𝑛 ∈ ℤ | 0 < 𝑛 < 12} and (𝜋, 2𝜋) =
{𝑥 ∈ ℝ | 𝜋 < 𝑥 < 2𝜋} (note the strict inequalities).

Half-open intervals are denoted with a square bracket on one side and
a parenthesis on the other. For example, [0, 12) = {𝑛 ∈ ℤ | 0 ≤ 𝑛 < 12}
and (𝜋, 2𝜋] = {𝑥 ∈ ℝ | 𝜋 < 𝑥 ≤ 2𝜋}.

359

360 Mathematical notation

Subscripts are used to denote individual elements within a set or se-
quence. For example, 𝑥𝑖 is the 𝑖th element of the sequence 𝑋, and we
call 𝑖 the index of the element. Note: In this text, indices start with 0.

Σ denotes a summation. For example, given the set 𝑋 = {2, 9, 3, 5, 1},
Σ 𝑥𝑖 is the sum of all elements of 𝑋, that is 2 + 9 + 3 + 5 + 1 = 20.
Sometimes, an operation or operations are applied to the elements of a
summation. For example, given the set 𝑋 = {1, 2, 3}, Σ 𝑥2

𝑖 is the sum of
the squares of all elements of 𝑋, that is 12 + 22 + 32 = 1 + 4 + 9 = 14.

Π (upper-case) denotes a repeated product. For example, given the
set 𝑋 = {2, 9, 3, 5, 1}, Π 𝑥𝑖 is the product of all elements of 𝑋, that is
2 × 9 × 3 × 5 × 1 = 270.

𝜋 (lower-case) is a mathematical constant, the ratio of a cir-
cle’s circumference to its diameter. This is approximately equal to
3.141592653589793.

In statistics, 𝜇 is used to denote the mean of a sample, population,
or distribution. You may have seen ̄𝑥 in other texts. These are different
notations for the same thing.

In statistics, 𝜎 denotes the standard deviation of a sample, population,
or distribution (𝜎2 denotes the variance).

± denotes “plus or minus” for example, 𝜇 ± 2.5𝜎 or −𝑏 ±
√

𝑏2 − 4𝑎𝑐.

Appendix C

pip and venv

Introduction
This covers creation of virtual environments and installing packages for
use in your own projects. If you are using an IDE other than IDLE,
chances are that your IDE has an interface for managing packages and
virtual environments. The instructions that follow are intended more for
people who are not using an IDE other than IDLE, or who are the DIY
type, or simply those who are more interested in how Python and the
Python ecosystem work. What follows is for users of Python version 3.4
or later.

PyPI, pip, and venv

There is a huge repository of modules you can use in your own projects.
This repository is called PyPI—the Python Package Index—and it’s
hosted at https://pypi.org/.

The Python Package Index (PyPI) is a repository of software
for the Python programming language.
PyPI helps you find and install software developed and shared
by the Python community.
–From the PyPI website

There you’ll find modules for just about anything—integration with
cloud computing services, scientific computing, machine learning, access-
ing and reading web-based information, creating games, cryptography,
and more. There are almost half a million projects hosted on PyPI. It’s
often the case that we want to install packages hosted on PyPI, which
do not ship with Python. Fortunately, there are tools that make this less
challenging than it might be otherwise. Two of the most useful of these
are pip and venv.

pip is the package installer for Python. You can use this to install
any packages listed on PyPI. pip will manage all dependencies for you.
What are dependencies? It’s often the case that one package on PyPI re-
quires another (sometimes dozens), and each of those might require other
packages. pip takes care of all that for you. pip identifies all packages

361

https://pypi.org/

362 pip and venv

that might be needed for the package you request and will automatically
download and install them, usually with a single command.

The other tool presented here is venv. This is, perhaps, a little more
abstract and can often confuse beginners, but in most cases it’s not
too complicated. What venv does is create a virtual environment where
you can install packages using pip. First, we’ll walk through the reasons
behind virtual environments and how to create one using venv. Then
we’ll see how to activate that virtual environment, install packages using
pip, and start coding.

Of course, you can follow the directions at https://packaging.pyth
on.org/en/latest/tutorials/installing-packages/#creating-and-using-
virtual-environments and https://pip.pypa.io/en/stable/installation/,
but if you want a somewhat more gentle introduction, read on.

What the heck is a virtual environment and why do I
want one?
Depending on your operating system and operating system version, your
computer may have come with Python installed, or Python may be in-
stalled to some protected location. Because of this, we don’t usually want
to monkey with the OS-installed Python environment (in fact, doing so
can break certain components of your OS). So installing packages to your
OS-installed (or otherwise protected) Python environment is usually a
bad idea. This is where virtual environments come in. With venv you
can create an isolated Python environment for your own programming
projects within which you can change Python versions, install and delete
packages, etc., without ever touching your OS-installed Python environ-
ment.

Another reason you might want to use venv is to isolate and control de-
pendencies on a project-by-project basis. Say you’re collaborating with
Jane on a new game written in Python. You both want to be able to
run and test your code in the same environment. With venv, again, you
can create a virtual environment just for that project, and share instruc-
tions as to how to set up the environment. That way, you can ensure if
your project uses package XYZ, that you and Jane both have the exact
same version of package XYZ in your respective virtual environments. If
you work with multiple collaborators on multiple projects, this kind of
isolation and control is essential.

So that’s why we want to use venv. Virtual environments allow us to
create isolated installations of Python, along with installed modules. We
often create virtual environments for specific projects—so that installing
or uninstalling modules for one project does not break the other project
or your OS-installed Python.

A virtual environment isn’t anything magical. It’s just a directory
(folder) which contains (among other things) its own version of Python,
installed modules, and some utility scripts.

The venv module supports creating lightweight “virtual envi-
ronments”, each with their own independent set of Python
packages installed in their site directories. A virtual environ-
ment is created on top of an existing Python installation,
known as the virtual environment’s “base” Python, and may

https://packaging.python.org/en/latest/tutorials/installing-packages/#creating-and-using-virtual-environments
https://packaging.python.org/en/latest/tutorials/installing-packages/#creating-and-using-virtual-environments
https://packaging.python.org/en/latest/tutorials/installing-packages/#creating-and-using-virtual-environments
https://pip.pypa.io/en/stable/installation/

363

optionally be isolated from the packages in the base environ-
ment, so only those explicitly installed in the virtual environ-
ment are available.
When used from within a virtual environment, common in-
stallation tools such as pip will install Python packages into
a virtual environment without needing to be told to do so
explicitly.

The syntax for creating a virtual environment is straightforward. At
a command prompt,

$ python -m venv [name of or path to environment]

where $ represents the command prompt, and we substitute in the name
of the environment we wish to create. So if we want to create a virtual
environment called “cs1210” we’d use this command:

$ python -m venv cs1210

This creates a virtual environment named cs1210 in the current directory
(you may wish to create your virtual environment elsewhere, but that’s
up to you).

If you get an error complaining that there is no python…

On some systems, python might be named python3. If you find
yourself in that situation, just substitute python3 or, on some OSs,
py, for python wherever it appears in the instructions.

In order to use a virtual environment it must be activated. Once ac-
tivated, any installations of modules will install the modules into the
virtual environment. Python, when running in this virtual environment
will have access to all installed modules.

On macOS

$. ./cs1210/bin/activate
(cs1210) $

On Windows (with PowerShell)

PS C:\your\path\here > .\cs1210\Scripts\activate
(cs1210) PS C:\your\path\here >

Notice that in each case after activation, the command prompt
changed. The prefix, in this case (cs1210) indicates the virtual environ-
ment that is currently active.

When you’re done using a virtual environment you can deactivate it.
To deactivate, use the deactivate command.

364 pip and venv

If you work in multiple virtual environments on different projects you
can just deactivate one virtual environment, activate another, and off
you go.

For more on virtual environments and venv see: https://docs.python.
org/3/library/venv.html.

OK. I have my virtual environment activated. Now what?
Installation, upgrading, and uninstallation of third-party Python mod-
ules is done with pip. pip is an acronym for package installer for Python.

pip is the preferred installer program. Starting with Python
3.4, it is included by default with the Python binary installers.
– Python documentation

When you ask pip to install a module, it will fetch the necessary files
from PyPI—the public repository of Python packages—then build and
install to whatever environment is active. For example, we can use pip
to install the colorama package (colorama is a module that facilitates
displaying colored text).

First, before using pip make sure you have a virtual environment
active. Notice that in the examples that follow, this virtual environment
is called my_venv (what you call yours is up to you). Example:

(my_venv) $ pip install colorama
Collecting colorama

Using cached colorama-0.4.6-py2.py3-none-any.whl (25 kB)
Installing collected packages: colorama
Successfully installed colorama-0.4.6

(my_venv) $

At this point, the colorama package is installed and ready for use. Pretty
easy, huh?

To see what packages you have in your virtual environment you can
use pip freeze. This will report all installed packages, along with depen-
dencies and version information. You can save this information to a file
and share this with others. Then all they need to do is install using this
list with pip install -r <filename here> (requirements.txt is commonly
used).

For more information and documentation, see: https://docs.python.
org/3/installing/index.html

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/installing/index.html
https://docs.python.org/3/installing/index.html

Appendix D

File systems

Introduction
When we write source code in Python (or any other language) our code
is saved in a file or files. Oftentimes, we want to read data from a file or
write data to a file. Accordingly, we must have some basic understanding
of files and file systems.

While file systems will vary somewhat based on your operating
system—macOS, Linux, or Windows—file systems share common fea-
tures. First, they include files and directories (also called “folders”), sec-
ond, they are organized hierarchically, and third, there is some physical
device on which they are stored.

The physical device on which files and directories are stored is usu-
ally a hard disk drive (HDD) or solid state drive (SSD). Your laptop or
desktop computer will have at least one of these.

Files and directories stored on such a device are arranged hierarchi-
cally in a tree-like structure. This means that directories can contain
files or other directories. Each physical device will have a “root” direc-
tory, and may have multiple directories as branches. You may think of
files as leaves on a branch. The location of each element in the file system
is represented as a path going from the root to the element in question.

For example, the file on my laptop that contains the text you are
reading right now has the path

/Users/clayton/Workspace/UVM/Instructor/cs1210/book/...
...appendix_d_file_systems/_file_systems.qmd

The root directory is signified by the first /. Subsequent slashes separate
segments in the path. All the intermediate elements are directory names.
The last element is the actual file: _file_systems.qmd.

This is to say that on my laptop’s SSD, there’s the root directory. The
root directory contains a directory called “Users”. Within the Users di-
rectory, there’s another directory called clayton, within that, a directory
called Workspace, and so on.

All modern operating systems provide a graphical user interface for
browsing and interacting with the file system (for example, searching for
files; creating, moving, deleting, or renaming files or directories; etc.), as
well as a text-based command line interface.

365

366 File systems

The details of such a tree will vary from machine to machine and
from operating system to operating system, but the basic idea is the
same: there’s a hierarchy of directories, and directories contain other
directories or files or both.

You may have noticed that the “tree” representing the file system
is drawn upside down, with the root at the top. This is typical for all
operating systems. Every element in your file system has a unique path,
indicating how to get from the root to that element, be it a directory or
file.

Filename extensions
Filenames usually include an “extension” which is used to indicate the
type of file it is. For example, Python files have a .py extension, as in
hello_world.py. Other file types make use of different extensions: .txt
for plain-text files, .md for Markdown files, .csv for comma-separated
value files, and so on.

It’s important to note that changing a filename extension doesn’t
change the content of a file—you can’t convert Python source code to a
PDF by changing the extension from .py to .pdf.

You should also be aware that operating systems (macOS, Linux,
Windows) associate filename extensions with application software, and
that operating systems will use this information to launch a particular
application associated with a given filename extension when a file is
double-clicked in the GUI file browser. For example, if you have a data
file in CSV format with a .csv extension, double-clicking it will most
likely launch Excel if you’re using Microsoft Windows, or Numbers if
you’re using macOS. Sometimes this behavior is desirable, sometimes it

367

is not. All operating systems allow you to change such associations if you
wish.

The good, the bad, the ugly
One nice thing about modern operating systems is that they provide
great search tools to find files in your file system. Just enter a keyword,
or portion of a file name, and the file browser will show you your file.
This is quite handy, and in many cases it eliminates the need to browse
the file system to a particular location in search of a file.

One not-so-nice thing about modern operating systems is that they
provide great search tools to find files in your file system. This means
that casual users often have no idea where a file is actually located—what
directory it’s contained in, or its full path. The convenience of search
functionality can obscure (or make entirely invisible) the hierarchical
structure of your file system.

Differences between operating systems
While all modern file systems share the general features outlined above,
there are some minor differences. For example, macOS and Linux use “/”
to separate path segments (in a command line interface), while Windows
uses “\”. Windows assigns drive letters to disk drives, the default for the
boot disk on a Windows machine being C. So on a Windows machine,
the path to this file (given above), might be something like this instead:

C:\Users\clayton\Workspace\UVM\Instructor\cs1210\book\...
...appendix_d_file_systems_file_systems.qmd

Different operating systems provide different GUIs, but they behave
similarly. macOS has the Finder, Windows has its File Explorer, and
most Linux distributions offer a choice of file browser: Nautilus, Dol-
phin, Thunar, Nemo, and Konqueror to name a few. Again, while these
are somewhat different, they all provide similar interfaces to similar file
systems.

You should familiarize yourself with the file browser for your OS. Make
sure you can:

• browse to any given location in your file system,
• find a file without using the built-in search functionality,
• rename a file,
• delete a file,
• create a new, empty folder.

Modern IDEs and browsing files
Many integrated development environments (IDEs) provide a built-in
file browser that can be displayed as a pane within the IDE window.
Some IDEs commonly used to write Python code include JetBrains’ Py-
Charm, Microsoft’s Visual Studio Code, the open source Spyder IDE,
and Thonny. All have built-in file browsers.

Some of these file browsers support drag-and-drop operations (for
example, to move a file from one directory to another, to move a file
from outside a project into a project, etc.). Others do not.

368 File systems

Figure D.1: File browser in Thonny

You should familiarize yourself with the file browser within the IDE
of your choice. Make sure you can:

• browse to a given file,
• create a new Python file (with .py extension),
• open a plain-text file (for example, either .txt or .csv file exten-

sion), and
• rename, move, and delete files.

Appendix E

Flow charts

Flow charts are a convenient and often used tool for representing the
behavior of a program (or portion thereof) in a diagram. They can help
us reason about the behavior of a program before we start writing it. If
we have a good flow chart, this can be a useful “blueprint” for a program.

We’ll begin with the basics. The most commonly used elements of a
flow chart are:

• ellipses, which indicate the start or end of a program’s execution,
• rectangles, which indicate performing some calculation or task,
• diamonds, which indicate a decision, and
• directed edges (a.k.a. arrows), which indicate process flow.

Figure E.1: Basic flow chart elements

Diamonds (decisions) have one input and two outputs. It is at these
points that we test some condition. We refer to this as branching—our

369

370 Flow charts

path through or flow chart can follow one of two branches. If the con-
dition is true, we take one branch. If the condition is false, we take the
other branch.

Figure E.2: Branches

A minimal example
Here’s a minimal example—a program which prompts a user for an inte-
ger, n, and then, if n is even, the program prints “n is even”, otherwise
the program prints “n is odd!”

In order to determine whether n is even or odd, we’ll perform a simple
test: We’ll calculate the remainder with respect to modulus two and
compare this value to zero.1 If the comparison yields True then we know
the remainder when dividing by two is zero and thus, n must be even.
If the comparison yields False then we know the remainder is one and
thus, n must be odd. (This assumes, of course, that the user has entered
a valid integer.)

Here’s what the flow chart for this program looks like:
1Remember, if we have some integer 𝑛, then it must be the case that either 𝑛 ≡ 0

mod 2 or 𝑛 ≡ 1 mod 2. Those are the only possibilities.

371

Figure E.3: Even or odd

• We start at the top (the ellipse labeled “start”).
• From there, we proceed to the next step: prompting the user for

an integer, n.
• Then we test to see if the remainder when we divide n by two equals

zero.
– If it does, we follow the left branch, and we print “n is even!”
– Otherwise, we follow the right branch, and we print “n is odd!”

• Finally, our program ends.

Here it is, in Python:

"""
CS 1210
Even or odd?
"""

n = int(input('Please enter an integer: '))

if n % 2 == 0:
print('n is even!')

else:
print('n is odd!')

372 Flow charts

The branching takes place here:

if n % 2 == 0:
print('n is even!')

else:
print('n is odd!')

Notice there are two branches:

• the if clause—the portion that’s executed if the expression n % 2
== 0 evaluates to True; and

• the else clause—the portion that’s executed if the expression n %
2 == 0 evaluates to False.

Another example: Is a number positive, negative, or zero?
Let’s say we want to decide if a number is positive, negative, or zero.
In this instance, there are three possibilities. How do we do this with
comparisons that only yield True or False? The answer is: with more
than one comparison!

First we’ll check to see if the number is greater than zero. If it is, it’s
positive.

But what if it is not greater than zero? Well, in that case, the number
could be negative or it could be zero. There are no other possibilities.
Why? Because we’ve already ruled out the possibility of the number
being positive (by the previous comparison).

Here’s a flow chart:

Figure E.4: Positive, negative, or zero

As before, we start at the ellipse labeled “start.” Then we prompt the
user for a float, x. Then we reach the first decision point: Is x greater

373

than zero? If it is, we know x is positive, we follow the left branch, we
print “x is positive”, and we’re done.

If x is not positive, we follow the right branch. This portion of the
flow chart is only executed if the first test yields False (that is, x is not
greater than zero). Here, we’re faced with another choice: Is x less than
zero? If it is, we know x is negative, we follow the left branch (from our
second decision point), we print “x is negative”, and we’re done.

There’s one last branch: the one we’d follow if x is neither positive
nor negative—so it must be zero. If we follow this branch, we print “x is
zero”, and we’re done.

Here it is in Python,

"""
CS 1210
Positive, negative, or zero?
Using nested if.
"""

x = float(input('Please enter an real number: '))

if x > 0:
print('x is positive!')

else:
if x < 0:

print('x is negative!')
else:

print('x is zero!')

This structure, which is quite common, is called a “nested if” statement.
Python provides us with another, equivalent way to handle this. We

can implement the flow chart for our three-way decision using elif, thus:

"""
CS 1210
Positive, negative, or zero?
Using elif.
"""

x = float(input('Please enter an real number: '))

if x > 0:
print('x is positive!')

elif x < 0:
print('x is negative!')

else:
print('x is zero!')

Both programs—the one with the nested if and the one with elif—
correctly implement the program described by our flow chart. In some
cases, the choice is largely a matter of taste. In other cases, we may have
reason to prefer one or the other. All things being equal (in terms of

374 Flow charts

behavior), I think the elif solution presented here is the more elegant
of the two.

In any event, I hope you see that flow charts are a useful tool for
diagramming the desired behavior of a program. With a good flow chart,
implementation can be made easier. You should feel free to draw flow
charts of programs before you write your code. You may find that this
helps clarify your thinking and provides a plan of attack.

Appendix F

Code for cover artwork

Here is the code used to generate the tessellated pattern used on the cover
of this book. It’s written in Python, and makes use of the DrawSVG
package. It’s included here because it’s a concise example of a com-
plete Python program which includes docstrings (module and function),
imported Python modules, an imported third-party module, constants,
functions and functional decomposition, and driver code. This is all writ-
ten in conformance to PEP 8 (or as close as I could manage with the
constraint of formatting for book page).

"""
Cover background for ITPACS.
Clayton Cafiero <cbcafier@uvm.edu>

Requires DrawSVG package.
To install DrawSVG: `$ pip install "drawsvg[raster]~=2.2"`
See: https://pypi.org/project/drawsvg/

DrawSVG requires Cairo on host system.
Ubuntu: `$ sudo apt install libcairo2`
macOS: `$ brew install cairo`
Anaconda: `$ conda install -c anaconda cairo`
See: https://www.cairographics.org/

For info on SVG 2: https://svgwg.org/svg2-draft/
"""
import math # 'cause we need a little trig
import random
import drawsvg as draw

Named SVG colors. Going for that green and gold!
COLORS = ['goldenrod', 'lightseagreen', 'lightgreen',

'gold', 'cyan', 'olivedrab', 'cadetblue',
'darkgreen', 'lawngreen', 'green', 'teal',
'darkseagreen', 'palegreen', 'orange',

375

376 Code for cover artwork

'khaki', 'turquoise', 'mediumspringgreen',
'lawngreen', 'yellowgreen', 'yellow',
'seagreen', 'lemonchiffon', 'greenyellow',
'chartreuse', 'limegreen', 'forestgreen']

TRAPEZOID_LEG = 40 # Everything is derived from this...
TRAPEZOID_HEIGHT = math.sin(math.radians(60)) * TRAPEZOID_LEG
TRAPEZOID_BASE_SEGMENT = TRAPEZOID_LEG / 2
TRAPEZOID_BASE = TRAPEZOID_LEG + 2 * TRAPEZOID_BASE_SEGMENT
TILE_HEIGHT = TRAPEZOID_LEG * math.sqrt(3)
Taking overlap into consideration we tile @ 120 x 105
COVER_WIDTH = 1950
COVER_HEIGHT = 2850
COLS = math.ceil(COVER_WIDTH / 120) + 2
ROWS = math.ceil(COVER_HEIGHT / 105) + 2

def draw_tile(rotate, fill):
"""If we choose the right starting point for
drawing the tile, and rotate about that point,
we don't have to worry about x, y translation. """
transform = f'rotate({rotate}, 0, 0)' # angle, cx, cy
return draw.Lines(0, 0,

TRAPEZOID_BASE, 0,
TRAPEZOID_BASE_SEGMENT + TRAPEZOID_LEG,
TRAPEZOID_HEIGHT,
TRAPEZOID_BASE_SEGMENT,
TRAPEZOID_HEIGHT,
0, TILE_HEIGHT,
-TRAPEZOID_LEG, TILE_HEIGHT,
close=True, stroke_width=0.5,
stroke='gray', fill=fill,
fill_opacity=1.0, transform=transform)

def draw_cube(trans_x, trans_y, colors_):
"""Assemble a cube from three rotated tiles. """
transform = f'translate({trans_x}, {trans_y})'
c = draw.Group(fill='none',

stroke='black',
transform=transform)

c.append(draw_tile(0, colors_[0]))
c.append(draw_tile(120, colors_[1]))
c.append(draw_tile(240, colors_[2]))
return c

if __name__ == '__main__':

d = draw.Drawing(COVER_WIDTH, COVER_HEIGHT, origin=(0, 0))

377

translate_y = 0.0

for i in range(ROWS):
if i % 2: # odd rows

translate_x = 0.0
else: # even rows

translate_x = TRAPEZOID_BASE_SEGMENT + TRAPEZOID_LEG
for j in range(COLS):

colors = random.sample(COLORS, 3)
d.append(draw_cube(translate_x,

translate_y,
colors))

translate_x += TRAPEZOID_BASE + TRAPEZOID_LEG

translate_y += TILE_HEIGHT + TRAPEZOID_HEIGHT

d.set_pixel_scale(1.0)
d.save_svg('cover.svg')
d.save_png('cover.png')

Index

__name__, 151

absolute value, 55, 327
accumulator, 231, 232, 327
adjacency list, 320
alternating sum, 233, 327
ambiguity, 20
anti-pattern, 233
argument, 76, 77, 79, 328

keyword, 265, 344
positional, 265, 328

arithmetic mean, 231, 328
arithmetic sequence, 225, 329
assembly language, 12
assertion, 170, 173, 329
assignment, see statement, 329
augmented assignment, 54

bell curve, 277
binary arithmetic, 24
binary code, 12, 329
binary numbers, 21
bitstring, 33
Boole, George, 30
Boolean connective, 130, 330
Boolean expressions, see expressions
branch, 136
branching, 330
bug, 168, 331
built-in functions

abs(), 221, 327
enumerate(), 233–235
exit(), 18
float(), 111
input(), 108
int(), 111
print(), 18, 79
range(), 225, 246
str(), 115
sum(), 230, 328

379

380 Index

bytecode, 14, 331

camel case, 331
central tendency, 331
Chomsky, Noam, 20
comma separated values (CSV), 331
command line interface (CLI), 108, 332
comments, 102, 332

comments as scaffolding, 103
comparable, 332
compilation, 14
compiler, 14, 332
compound statement, 138, 298
concatenation, 113, 332
condition, 136, 333, 353
congruent, 60, 333
conjunction, 131
console, 108, 333
constants, 48, 101
constructor, 225, 333
context manager, 262, 334
CSV reader, 270
CSV writer, 270

De Morgan’s Laws, 132
decimal system, 22
delimiter, 29, 35, 334
determinism, 256
diagrams

decision tree, 144
flow chart, 339, 369

dictionary, 306, 334
key, 334
view objects, 310

dictionary methods
.items(), 311
.keys(), 311
.pop(), 313
.values(), 311

Dijkstra, Edsger, 169
dividend, 54, 335
divisor, 54, 335
docstring, 102, 335
driver code, 335
duck typing, 356
dunder, 155, 335
dynamic typing, 336

edge, 336
empty sequence, 336
entry point, 336
escape sequence, 36, 37, 337

Index 381

Euclid’s algorithm, 221, 223
Euclidean division, 54, 337
evaluation, 46, 337
exception handling, 338
exceptions, 68, 337

AssertionError, 171, 173
AttributeError, 295
FileNotFoundError, 271, 298
IndentationError, 93, 295
IndexError, 180, 296
KeyError, 307, 316
ModuleNotFoundError, 94
NameError, 69, 295
SyntaxError, 68, 294
TypeError, 70, 296, 317
ValueError, 94, 125, 297
ZeroDivisionError, 56, 70, 298

expression, 49, 338
Boolean, 130, 132, 136, 330

f-string, 116, 117, 340
factorial, 239
falsey, 338
Fibonacci sequence, 248, 338
float, 39
floating-point number, 29, 339
floor division, 54, 339
floor function, 58, 339
format specifiers, 117, 120
functions, 76, 340

call or invoke, 76, 331, 343
defining, 76
formal parameters, 77, 347
impure function, 341
local variables, 78
pure functions, 348
return values, 77
returning None, 80

garbage collection, 205
graph, 319, 340

acyclic, 321
adjacent, 320
breadth-first search, 321
cycle, 321
cyclic, 321
edge, 320
neighbor, 320
vertex, 320

graphical user interface (GUI), 108, 340
greatest common divisor (GCD), 221

382 Index

hashable, 309, 313, 334, 340
Hello World, 18
heterogeneous, 30, 31, 341
Hopper, Grace Murray, 168

identifier, 341
IDLE, 343
IEEE 754, 39
immutable, 30, 341
import, 341
incremental development, 342
index, 179, 232, 342
information hiding, 87
input validation, 218
input/output (I/O), 342
instance, 342
instantiate, 270
integrated development environment (IDE), 342
interactive mode, 2, 16, 343
interpretation, 14
interpreter, see Python interpreter
ISO 4217, 122
iterable, 223, 343

keywords, 77, 344
and, 130, 131, 330
as, 262
assert, 170, 171, 230, 329
def, 77
del, 313
elif, 330
else, 330
if, 330
import, 341
in, 310
not, 130, 330
or, 130, 131, 330
return, 77
with, 262

lexicographic order, 134, 344
line continuation, 123
list methods, 181

.append(), 182

.copy(), 184

.pop(), 182

.sort(), 182
literal, 28, 49, 345
local variable, 88, 345
loop, 211, 345

break, 219
for, 211, 223

Index 383

nested, 240
while, 211, 213, 215, 217, 221

Matplotlib, 345
mean, 275–277, 280, 281
Mersenne twister, 256
method, 346
module, 346
modulus, 60, 346
Monte Carlo method, 252, 346
mutable, 30, 346

names, 46
namespace, 347
naming

camel case, 100
snake case, 100
word caps, 100

natural numbers, 38
normal distribution, 277, 280

object, 27, 347
operands, 50
operators, 50, 347

addition, 50
assignment operator, 44, 329
binary operators, 50
comparison operators, 133
concatenation (+), 53
division, 50
exponentiation, 50, 66
floor division, 50, 56, 339
modulo, 50
multiplication, 50
overloading, 347
PEMDAS, 52
precedence, 51, 52
remainder, 56
repeated concatenation, 53
subtraction, 50
unary negation, 52

outer scope, 89

Parnas, David, 87
PEP 8, 98, 348
product, 232
proposition, 130
pseudo-random, 255, 348
pseudocode, 103
Python interpreter, 15
Python shell, 16
Python virtual machine, 331

384 Index

Python-supplied modules
csv, 332
math, 91
random, 252
statistics, 281

quantile, 276, 281, 348
quotient, 54, 348

random walk, 348
rational numbers, 38
read-evaluate-print loop (REPL), 17, 349
real numbers, 38
remainder, 54, 349
REPL, 17
replacement fields, 116
representation error, 37, 39, 349
return value, 349
rubberducking, 350
run time, 350

scope, 78, 88, 205, 350
script mode, 2, 18, 350
seed, 256, 350
semantics, 20, 350
sequence methods

.index(), 196
shadowing, 89, 90, 351
side effect, 352
slice, 201, 352
snake case, 353
standard deviation, 275, 278–281, 353
statement

assignment, 44, 45, 353
compound, 138

static typing, 353
stride, 203, 227, 354
string, 29, 354
string interpolation, 116, 343, 354
string methods, 141

.capitalize(), 142

.lower(), 142

.strip(), 263, 267

.upper(), 142
style, 97

line length, 101
subscripts as indices, 231
summation, 231, 354
syntax, 19, 354

terminal, 354
top-level code environment, 151, 354

Index 385

trace (loop), 235
traceback, 68
truth table, 130
truth value, 130, 355
truthy, 355
truthy and falsey, 138, 330
try/except, 298
type inference, 356
types, 28, 49, 355

bool, 30
dict, 31
dynamic typing, 31, 45
enumerate, 234, 235
float, 29
function, 347
implicit conversion, 51
int, 29, 38
iterator, 245
list, 30, 178, 345
NoneType, 30
range, 225, 329
static typing, 31
str, 29, 35
tuple, 30, 185, 355

Unicode, 33, 35, 356
unpacking, 197, 234, 351, 356

variable, 44, 46, 356
vertex, 357

while, 218
with, 334

	Table of contents
	Preface
	To the student
	Acknowledgements
	Introduction
	Programming and the Python Shell
	Why learn a programming language?
	Compilation and interpretation
	The Python shell
	Hello, Python!
	Syntax and semantics
	Introduction to binary numbers
	Exercises

	Types and literals
	What are types?
	Dynamic typing
	Types and memory
	More on string literals
	Representation error of numeric types
	Exercises

	Variables, statements, and expressions
	Variables and assignment
	Expressions
	Augmented assignment operators
	Euclidean or ``floor'' division
	Modular arithmetic
	Exponentiation
	Exceptions
	Exercises

	Functions
	Introduction to functions
	A deeper dive into functions
	Passing arguments to a function
	Scope
	Pure and impure functions
	The math module
	Exceptions
	Exercises

	Style
	The importance of style
	PEP 8
	Whitespace
	Names (identifiers)
	Line length
	Constants
	Comments in code
	Exercises

	Console I/O
	Motivation
	Command line interface
	The input() function
	Converting strings to numeric types
	Some ways to format output
	Python f-strings and string interpolation
	Format specifiers
	Scientific notation
	Formatting tables
	Example: currency converter
	Format specifiers: a quick reference
	Exceptions
	Exercises

	Branching and Boolean expressions
	Boolean logic and Boolean expressions
	Comparison operators
	Branching
	if, elif, and else
	Truthy and falsey
	Input validation
	Some string methods
	Decision trees
	Exercises

	Structure, development, and testing
	main the Python way
	Program structure
	Iterative and incremental development
	Testing your code
	The origin of the term ``bug''
	Using assertions to test your code
	Rubberducking
	Exceptions
	Exercises

	Sequences
	Lists
	Tuples
	Mutability and immutability
	Subscripts are indices
	Concatenating lists and tuples
	Copying lists
	Finding an element within a sequence
	Sequence unpacking
	Strings are sequences
	Sequences: a quick reference guide
	Slicing
	Passing mutables to functions
	Exceptions
	Exercises

	Loops and iteration
	Loops: an introduction
	while loops
	Input validation with while loops
	An ancient algorithm with a while loop
	for loops
	Iterables
	Iterating over strings
	Calculating a sum in a loop
	Loops and summations
	Products
	enumerate()
	Tracing a loop
	Nested loops
	Stacks and queues
	A deeper dive into iteration in Python
	Exercises

	Randomness, games, and simulations
	The random module
	Pseudo-randomness in more detail
	Using the seed
	Exercises

	File I/O
	Context managers
	Reading from a file
	Writing to a file
	Keyword arguments
	More on printing strings
	The csv module
	Exceptions
	Exercises

	Data analysis and presentation
	Some elementary statistics
	Python's statistics module
	A brief introduction to plotting with Matplotlib
	The basics of Matplotlib
	Exceptions
	Exercises

	Exception handling
	Exceptions
	Handling exceptions
	Exceptions and flow of control
	Exercises

	Dictionaries
	Introduction to dictionaries
	Iterating over dictionaries
	Deleting dictionary keys
	Hashables
	Counting letters in a string
	Exceptions
	Exercises

	Graphs
	Introduction to graphs
	Searching a graph: breadth-first search
	Exercises

	Appendices
	Glossary
	Mathematical notation
	pip and venv
	File systems
	Flow charts
	Code for cover artwork
	Index

